OPERATION MANUAL

Part-No: 315116002001
Issue: 12 / 2023

Battery Charger /Analyzer

UL60 Light

0,5-40VDC / 0,5-60A
TKZ: UL60-L. 040000
Software-Version UL60 V1.72
Date: 18.12.2023

COPYRIGHT ${ }^{\text {© }}$ 2014-2023 by
Nortec Electronics GmbH \& Co. KG
An der Strusbek 32B
D - 22926 Ahrensburg
Phone: +49 410242002
Fax: +49 410242840
Email: info@nortec-electronics.de
Web: www.nortec.de

HISTORY OF REVISION

Datum	Änderung	Version
	Time of charge NiCd initial start corrected; Emergency stop in case of mains failure improved; Reset TFT Display included; Text NKBN discharge corrected	1.34
	Time of charge lead-acid battery corrected; Capacity test lithium C1 to C10 included; Marathon initial start corrected	1.35
	Lithium cutoff voltage improved	1.36
	USB „Data clr" after data save included	1.37
	USB data save defeatable	1.38
	Danisch languages added	1.39
04.04.2018	I-Charge Capacity Monitoring	1.40
	Eliminate of vibes durch charging program	1.41
	Date failure during start in time corrected	1.42
06.08.2018	Date capacity test corrected; Discharging failure during Hawker short programcorrected	1.43
13.11.2018	Blei Lufffahrt Start und Kapazität Fehler behoben, Vorladung Blei $j a /$ nein Wert von $2,15 \mathrm{~V}$ auf $2,08 \mathrm{~V}$ geändert.	1.44
1.6.2019	Ultra Low Maintenance Batterien aufgenommen	1.50
11.12.2019	bis 22 Zellen 50 A	1.52
6.2.2020	Fehler Zeitstart behoben	1.54
6.2.2020	Fehler Zeitstart behoben	1.54
	Reset der Kalibrierwerte möglich	1.55
	-Delta U für Progeditor erweitert	1.56
	Marathon Umschaltung berichtigt	1.57
9.7.2020	Mittelung automatischer Zelltester verbessert	1.58
6.10.2021	Marathon manual R18	1.64
30.5.2022	GILL battery added	1.65
9.12.2022	Concorde battery implemented	1.66
1.3.2023	Several programs expanded	1.68
28.06.2023	Fixed constant voltage end expression error	1.70
13.10.2023	1 hour halt added to Kaptest lead battery aviation	1.71
18.12.2023	Error Initial commissioning Saft fixed	1.72

Manufacturer:
Nortec Electronics GmbH \& Co. KG
An der Strusbek 32 B
22926 Ahrensburg
Germany

Part-No.: 315016002001
Edition: 2 / 2023
Date: 18.12.2023

© Copyright

This document and all contained information are property of Nortec Electronics GmbH \& Co. KG. Nortec Electronics GmbH \& Co. KG reserves the right to make product changes without prior notice.

Table of content

1 General information 10
1.1 Scope of application 10
1.2 Application 11
2 Maintenance and safety instructions 12
2.1 Safety instructions 12
2.2 Maintenace instructions. 15
3 Operating and display elements 16
3.1 Front panel 16
3.2 Rear Panel 17
4 Principles of operation 19
4.1 Connection activities 19
$4.2 \quad$ Installation 19
4.3 Warning notes 19
5 Technical data 20
5.1 Electrical input and output parameter 20
5.2 Temperature range 20
5.3 Calibration 20
6 Handling 21
6.1 General handling instructions 21
6.1.1 Display 21
6.1.2 Keyboard 22
6.2 Selftest 23
6.3 USB 24
6.4 RS232 26
6.5 Remote monitoring 26
6.6 Network printer 28
6.7 Functions of printer programs 29
7 System preferences 31
7.1 Language, date, time 31
7.1.1 Select language 31
7.1.2 Change date 32
7.1.3 Enter time 32
7.2 Adjust Ethernet IP-address 33
7.2.1 Enter IP-address 33
7.2.2 Enter subnet mask 33
7.2.3 Adjust gateway 34
7.2.4 MAC address 34
7.2.5 Adjust network printer 34
7.2.6 Device number 35
7.3 Calibration / Unit number, 35
7.4 Volume control beeper 35
8 Program selection 36
8.1 Principles for program selection 36
8.2 The battery types 38
8.3 The program - Matrix 38
8.4 Battery data entry 39
8.4.1 General information 39
8.4.2 Work with „Other battery" P: 00 39
8.4.3 Work with lead batteries 40
8.4.4 Work with NiCd batteries 42
8.5 The display screen for program 420 44
8.5.1 Program 420 Step 1 44
8.5.2 Program 420 Step 2 45
8.5.3 Program 420 Step 3 46
8.5.4 Program 420 Step 4 47
8.5.5 Program 420 Step 5 48
8.5.6 Program 420 Step 6 49
9 Tabular overview of the program procedures 50
9.1 Discharge 51
9.1.1 Program 000: Discharge (without data specification of a battery) 52
9.1.2 Program 010: Discharge Pb battery sealed MIL 52
9.1.3 Program 011: Discharge Pb battery sealed commercial 52
9.1.4 Program 016: Discharge Pb battery vented commercial 53
9.1.5 Program 019: Discharge Pb battery (free input) 53
9.1.6 Program 020: Discharge NiCd battery (manufacturer independent). 54
9.1.7 Program 021: Discharge NiCd battery HAWKER 54
9.1.8 Program 022: Discharge NiCd battery SAFT 55
9.1.9 Program 023: Discharge to 23 V NiCd battery NKBN 55
9.2 Initial commissioning 57
9.2.1 Program 110: Initial commissioning Pb battery sealed MIL 57
9.2.2 Program 111: Initial commissioning Pb battery sealed commercial 58
9.2.3 Program 116: Initial commissioning Pb battery vented commercial 59
9.2.4 Program 120: Initial commissioning NiCd battery (manufacturer independent) 60
9.2.5 Program 121: Initial operation NiCd battery HAWKER 61
9.2.6 Program 122: Initial operation NiCd battery SAFT 62
9.2.7 Program 124: Initial operation NiCd battery MARATHON 63
9.3 Charge 65
9.3.1 Program 210: Charge Pb battery sealed MIL 66
9.3.2 Program 211: Charge Pb battery sealed commercial 68
9.3.3 Program 212: Charge Valve Regulated Lead Acid Aircraft Battery 69
9.3.4 Program 216: Charging lead battery commercial open 70
9.3.5 Program 219: Charge Pb battery (free input) 71
9.3.6 Program 220: Charge NiCd battery (manufacturer independent) 72
9.3.7 Program 221: Charge NiCd battery HAWKER 73
9.3.8 Program 222: Charge NiCd battery SAFT 74
9.3.9 Program 223: Charge NiCd battery NKBN 75
9.3.10 Program 224: Charging NiCd battery MARATHON 76
9.4 Capacity test 78
9.4.1 Program 312: Capacity Test Valve Regulated Lead Acid Aircraft Battery 79
9.4.2 Program 320: Capacity Test NiCd battery (manufacturer independent) 80
9.4.3 Program 321: Capacity Test NiCd battery HAWKER 80
9.4.4 Program 322: Capacity Test NiCd battery SAFT 82
9.4.5 Program 323: Capacity Test NiCd battery NKBN 83
9.4.6 Program 324: Capacity Test NiCd battery MARATHON 84
9.5 859.5.1 Program 410: Maintenance Pb battery sealed MIL9.5.2 Program 411: Maintenance Pb battery sealed commercial8788
9.5.3 Program 416: Maintenance Pb battery vented commercial
9.5.4 Program 419: Maintenance Pb battery (free input) 89
9.5.4 Program 410. Maintenance Pb battery (free input) 90
9.5.5 Program 420: Maintenance NiCd battery (manufacturer independent) 91
9.5.6 Programm 421: Maintenance NiCd battery HAWKER 92
9.5.7 Programm 422: Maintenance NiCd battery SAFT 96
9.5.8 Programm 424: Maintenance NiCd battery MARATHON 99
9.6 I-Charge 101
9.6.1 Program 510: I-Charge Pb battery sealed MIL 102
9.6.2 Program 511: I-Charge Pb battery sealed commercial 102
9.6.3 Program 516: I-Charge Pb battery vented commercial 102
9.6.4 Programm 520: I-charge NiCd battery (manufacturer independent) 102
9.7 Deep Discharge 103
9.7.1 Program 621: Deep Discharge NiCd battery HAWKER 104
9.7.2 Program 622: Deep Discharge NiCd Battery SAFT 105
9.7.3 Program 623: Deep Discharge NiCd battery NKBN 106
9.7.4 Program 624: Deep Discharge NiCd battery MARATHON 107
9.8 Reconditioning 108
9.8.1 General 108
9.8.2 Program 721: Reconditioning NiCd battery HAWKER 108
9.8.3 Program 722: Reconditioning NiCd battery SAFT 110
9.8.4 Program 724: Reconditioning NiCd battery MARATHON 111
$9.9 \quad$ Constant Voltage Supply 112
9.9.1 Program 800: Constant Voltage Supply 112
9.9.2 Program 810: Constant Voltage Supply Pb battery sealed MIL 112
9.9.3 Program 811: Constant Voltage Supply Pb battery sealed commercial 112
9.9.4 Program 816: Constant Voltage Supply Pb battery vented commercia 112
9.9.5 Program 819: Constant Voltage Supply Pb battery (free input) 112
9.9.6 Program 820: Constant Voltage Supply NiCd battery (manufacturer independent) 113
9.9.7 Program 821: Constant Voltage Supply NiCd battery HAWKER 113
9.9.8 Program 822: Constant Voltage Supply NiCd battery SAFT 113
10 Change printer paper and ink ribbon 114
10.1 Changing of ink ribbon 114
10.2 Changing of printer paper roll: 114
11 Used terms 115

1 General information

1.1 Scope of application

The network-compatible battery charger /analyzer UL60 is a microprocessor controlled charging-, discharging- and maintenance device. All programs can be used for aircrafts, railways or stationary storage. Rechargeable lead acid- and Nickel Cadmium-batteries can be charged, discharged or optimally serviced with individually adjusted programs.

- rated voltages between 1.2 and 28.8 V
- capacities between 1 and 900 Ah
o NiCd aircraft: max. 60 Ah with C_{1}
o NiCd others: max. 300 Ah
o Lead acid: max. 900 Ah (limit set by device settings)
All programs can be selected menu guided via console.
Main feature is the capacity test of lead acid- and Nickel Cadmium-batteries.
Focuses of the UL60 are process optimization and of aircraft batterie maintenance. Particulary the maintenance of the aircraft batteries is type specific and has to comply with manufacturer's maintenance manuals. The UL60 can fulfill these requirements.

Optional the UL60 (not the UL60light) can be operated with an Cell-Measurement-Adapter. When using that the device can perform fully automated process cycles without any manual intervention. The only exception is the adjustment of the battery electrolyte level.

For measurement and recording of single cell-voltages the UL60 provides with a designated program.
The UL60 is network compatible via Ethernet with TCP/IP-protocol. Thus, it is possible to work with remote (multiple) display, data logging and connected network printers for recording of measurements.

Application field

The device with housing is constructed for for stationary and mobile use in closed rooms. Due to the robust construction, it can be used in 19" housing racks and cases as a multi-purpose tool.

Battery types - the software at present allows the use of the following battery types:

00 Other battery
10 Lead acid battery sealed MIL (with fixed electrolyte AGM or GEL)
11 Lead acid battery sealed commercial (with fixed electrolyte AGM or GEL)
12 Valve regulated lead acid aircraft battery
16 Lead acid battery vented commercial
19 Lead acid battery (free input)
20 NiCd battery (manufacturer independent)
21 NiCd battery HAWKER
22 NiCd battery Saft
23 NiCd battery NKBN
24 NiCd battery MARATHON

The operator can coordinate each battery treatment with the respective battery type by typing in the battery parameter (nominal voltage, number of cells and nominal capacity). This procedure guarantees the best possible readiness (electrical performance) of the battery lifespan.

1.2 Application

The regular housing is designed for the use in spaces with roof, closed rooms which are comly with required ventilation facilities. This could be laboratories, work-/ battery shops, charging rooms and so on.

The completely functional plug-in unit can be used in the stationary 19 " housing racks as well as on transport trolleys for mobile usage.

2 Maintenance and safety instructions

2.1 Safety instructions

Please read this manual carefully before commissioning and keep these in a safe place.
Every device is tested by the manufacturer in terms of functionality and safety before being shipped. When properly used, the device is safe in operation.

The battery charger / analyzer UL60 may only be operated in immaculate condition in compliance with this instruction manual. All safety and operating instructions has to be observed.

In case of maloperation or abuse danger can result for:

- the life and limb of the operator,
- the device and other properties of the operator,
- the functioning of the device.

All persons involved in the execution of installation, commissioning, operation, maintenance and servicing of the device must:

- be appropriately qualified,
- observe carefully these operating instructions and
- follow the applicable rules for occupational safety.

Unauthorized changes and modifications to the equipment are prohibited and will void the warranty. The local safety regulations have to be obeyed.

Working with the battery charger / analyzer UL 60:

CAUTION!

- Mains voltage ($230 \mathrm{~V}, 50 \mathrm{~Hz}$) in the battery charger / analyzer UL 60.
- Warning of hazardous electrical voltage.
- Disconnect from the mains power supply before opening the device.
- Hazards by charged capacitors with high capacity and performance.
- do not make any manipulations on the unit.

The battery charger / analyzer UL60 may only be opened and repaired by the manufacturer, enabled repair centers or in individual agreement with Nortec Electronics.

The operator has to check the functional safety and the condition of the device and cables before every use.

In the event of interruption of the power supply for >1 second, the device returns to the initial state.
The charging cable must not be disconnected under load from the battery during operation.
The UL60 may only operate in the cases provided by the manufacturer housings or racks, otherwise the unprotected running fan may affect equipment damage or injury.

The battery charger / analyzer UL 60 complies with protection IP20. It should be kept clean and dry. Electrolyte contaminated tools and liquids must not be placed on the device.

The device is protected against polarity reversal or polarity reversal of the battery. In the event of reversed connection of the charging cable, the device signals "voltage $<0.1 \mathrm{~V}$ " and requests to stop the program. After removal of the fault, the program must be restarted.

Generally, the valve plugs must be removed beforehand the electrical maintenance. The foregoing applies to working with Cell-Measurement-Adapters. The valve plugs can not be removed lateron with with mounted adapter.

The cover from sealed aircraft batteries have always to remove beforehand.
Take utmost care when entering the battery data, charging parameters and the number of cells of NiCd batteries. Incorrect entries may damage the battery.

The programs of the battery charger / analyzer UL60 were created with the utmost care according to the maintenance manuals of the battery manufacturers, but are offered without guarantee. Before applying the programmed programs, they must be checked for compliance with currently valid maintenance manuals of the battery manufacturer. In any doubt or in case of deviations the currently valid maintenance manual of the battery manufacturer always applies.

We ask you to inform us in any case of any discrepancies.

Working with batteries:

When used properly and according to the manufacturers instructions from batteries do not pose any particular risks.

Never use the device for maintenance of NiCd and lead-acid batteries without chemical neutralization between operational or use different cable sets.

The currently valid maintenance manuals and safety regulations of the respective battery manufacturer must be strictly followed and shall give priority to the safety instructions described here.

| Note maintenance and safety instructions of the battery manufacturer! |
| :--- | :--- |
| All maintenance on batteries exclusively carried out by properly |
| qualified personnel. |

Hazardous electrical voltage! $-\quad$Do not place any metallic tools or objects on the battery. Do not wear accessories made of metal, such as rings, watches, belts or jewelry. Explosion and fire hazard! Both during and after charging, the battery can generate highly explosive detonating gas (a mixture of oxygen and hydrogen). Avoid causing sparks when handling cables and electrical devices. Avoid short circuits: Only insulated tools may be used. Do not place or drop any metal objects on the battery. Do not wear accessories made of metal, such as rings, watches, belts or jewelry. No smoking! $-\quad$ Follow the instructions for battery use! - Observe the dangers posed by batteries. Batteries are heavy! $-\quad$ Use appropriate transport / lifting equipment. $-\quad$ The battery vent tubes are not intended for use as "carrying handles". $-\quad$ Battery acids and electrolytes are very corrosive. Wear protective gloves and eye protection. Do not tilt the battery. They are legally obliged to return used batteries, so a correct disposal can be ensured.

Working with automatic cell measuring adapter (not available in the UL60-L):

Risk of injury: The test prods of the cell measuring adapter are sharp-edged and can lead to injuries if they are not handled properly.

Only suitable adapters suitable for each battery should be used.
Before positioning the cell measuring adapter, ensure that the measuring prods are freely movable. This can be checked by slight lifting the cell measuring adapter. When mounting the adapter, the adapter should not be jammed. The adapter is fixed with the lid holders of the battery. The measuring prods must be placed on the battery poles or connectors.

The adapter should be stored on a soft base so the probes and the base can not be damaged.

2.2 Maintenace instructions

The battery charger / analyzer UL 60 should be kept clean and dry. You can clean it with a damp or antistatic cloth. When cleaning do not use any chemical or abrasive cleaners.

The automatic cell measuring adapter is attached directly to the battery and should be cleaned regularly. You can use clear or soapy water.

For the cleaning and maintenance of batteries, please refer to the currently valid maintenance instructions of the battery manufacturer.

3 Operating and display elements

The operating and display elements as well as the connector elements of the battery charger /analyzer UL60 are on the front panel. The connector elements for the automatic cell voltage measurement and for the interconnectedness with the personal computer are arranged on the rear panel.

3.1 Front panel

Power ON / OFF-switch with display

Switches the device on or off. Power I - O: switch on I for operation
The lighted switch indicates that mains voltage is available.

Display

TFT-display (800×480 pixel) communicates with the user and shows for example program and charging parameter.

Keypad

The keys Break clear print enter permit interruption, clear faulty inputs start printing as well as acknowledge of inquiries or input.

The display allows the user numerical input for example battery parameter or identification number of the user. opens the menu to choose a different language or the time and starts the programs.

Printer

The inbuilt record printer can be activated before starting, in between or after the battery treatment by pressing the key $\underset{P \text { PRINT }}{\mathbf{P}}$ all essential battery parameter as well as battery failures will be printed.

Celltester

The UL60 and the manual celltester will be connected via a 6-pole connector of the type VG 95 $328 \mathrm{C} 10-6 \mathrm{PN}$. Cell voltage upto +4.0 V can be measured with the celltester.

Battery connection

The UL60 and the battery is connected via different battery connection cables using two 4-pole VG-electrical connectors according to VG 95234.

USB-connection for USB flash drive (not available in the UL60-L)

The recorded parameter can be stored on USB flash drive.

3.2 Rear Panel

Netcable

For voltage supply of the device at 230 VAC mains.

Line Fuse

To secure mains inlet.

Signal generator

The user will be informed about the state of the battery or actions to be taken by the alarm annunciator in use for battery failures, false inputs or after a treatment is finished and an action is necessary to continue.

Junction box 28-poles (not available in the UL60-L)

For the connection of an automatic celltester which can be delivered for different NiCd-batteries.

Fig. Automatic celltester (without temperature sensor)

Sub-D (9-pole) connector plug

For connection to RS 232 interface of personal computer for software update.

Ethernet connection RJ45 (not available in the UL60-L)

For network or browser connection to view data or for being able to print data after the program finshed.

4 Principles of operation

4.1 Connection activities

The standard procedure for all programs is as follows:

- Connect to 230 VAC-net
- Connect battery
- Net switch POWER I-O use I „In operation"

After this routine, the selftest starts.

NOTE! In case of error message the routine will not continue.

After switching on the already connected battery must be chosen in the menu. Press the keys

. The possible battery types are listed in chapter 8.2 Page 30.

4.2 Installation

The device must be set up in a way that additional and used air can pass (minimum 10 cm free space behind the device).
The cooling air comes from the bottom and gets out at the rear side. Operating in open area for example in a tent take care that the device does not stand on a dusty ground because dirt can influence the cooling effect.

The device has to be operated in the supposed housings or racks because the fan in the rack is unprotected and thus can cause device damage or risk of injury.

4.3 Warning notes

Caution avoids contact!

The rear part of the rack can heat up especially during discharging programs.
Increase in temperature of the heat sink is regulated and will end in a device shut down if too high.

Do not open device during operation!

After disconnecting of the device from the 230VAC net there can be dangerous voltages because of loaded capacitors. Maintenance of the device should only be done by the manufacturer in order to secure guarantees!

Attention: The manufacturer does not assume liability for damages caused by the user incorrect installation, initial operation or use.

If the UL60 is in use for aeronautical engineering the device has to be repaired and calibrated by the manufacturer only.

5 Technical data

5.1 Electrical input and output parameter

Input voltage
Feed frequency
Input power
Mains fuse external
Fan power
Charging current range
Charging current range
Charging current range
Discharging current range
Charging voltage range
Discharging voltage range
Voltage precision
Current precision
Temperature precision
Isolation
Safety class
Working temperature
Weight
Dimensions
Distance from obstacles for used air : Interfaces
: $\quad 230$ VAC $\pm 10 \%$ (single phase)
: $\quad 45$ to 60 Hz
: $\quad 3000 \mathrm{VA}$
: $\quad 16 \mathrm{~A}$ semi time-lag
: About 100/300 litre/minute
$\therefore \quad 0.5-00 \mathrm{~A}($ to 31 V$)$
: $\quad 0.5-60 \mathrm{~A}($ to 31 V)
$: \quad 0.5-50 \mathrm{~A}(>31 \mathrm{~V})$
$\vdots \quad 0.5-40 \mathrm{~A}(>34,1 \mathrm{~V})$
: $\quad 0.5-60 \mathrm{~A}$
: $\quad 0.1-40 \mathrm{~V}$ (using NiCd reload upto 41.5 V)
: $\quad 0.1-40 \mathrm{~V}$
: $\quad<0.1 \%$ adjusted value plus ± 5 digits
$: \quad<0.1 \%$ adjusted value ± 5 digits
$: \quad< \pm 2^{\circ} \mathrm{C}$
$\vdots \quad< \pm 2^{\circ} \mathrm{C}$
: VDE 0160, class I
: IP20
$\begin{array}{ll}\vdots & 0-+45^{\circ} \mathrm{C}\end{array}$
: \quad About 32 kg (in19"-housing without battery cable)
Width 504 mm , height 242 mm , depth 400 mm > 100 mm
USB 2.0; RS232, Ethernet RJ45

5.2 Temperature range

The functions of the device are guaranteed in temperature range from $0^{\circ} \mathrm{C}$ upto $+45^{\circ} \mathrm{C}$.
The precision of the visual display and the printed record of the charging and discharging parameter correspond to the precision specified in chapter 5.1.

The precision of output data is guaranteed in the temperature range from $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ for 2 years starting from the delivery date of the device.

5.3 Calibration

We recommend a first calibration by the manufacturer Nortec Electronics or by an authorized partner company after 2 years.

After that for safety related engineering a yearly calibration and maintenance is recommend. Additionally, please pay attention to the internal and external rules laid down by the competent authorities.

6 Handling

6.1 General handling instructions

6.1.1 Display

The display of the UL60 is divided into 3 display sections:

Section 1 (first 2 lines):

Display of battery type and type of treatment

Section 2 (3.-4. lines):

Status of program
This line displays the status of the device in general.
This could be: PROGRAM SELECTION, PROGRAM START, PROGRAM END.
Status
The information displayed shows the program step with description of the running routine.
Time
The time is displayed in the following order: hour : minute : second
Input, information or transaction parameter
In this section, all selections or parameter are shown in time such as:

- Parameter- or program selection
- Error messages
- Operating parameter (current, voltage and so on) during battery threatment process
- Information about menu process, temperature display

Section 3 (below):

In adition to a program:
Help texts, additional information
During program routine:

- Help texts,
- Last discharging curve (in case the program includes discharging),
- Last charging curve (in case the program includes charging),
- Indicated value of cell measurements (in case single cells were measured),
- Bar chart of cell measurements (in case single cells were measured).

For selection, these keys are used

6.1.2 Keyboard

Function of keys

Key		=	Cancel entry
	8		
Key	BREAK	=	Interrupt / go back
	P		
Key	PRINT	=	Start program including print / print
	E		
Key	ENTER	=	Entry
Key	*	$=$	Program start without print / special program
Keys	1	$=$	Numbers $1-9,0$
Key	\bullet	$=$	Decimal point
Key	\leftarrow	$=$	Back
Key	\Rightarrow	$=$	Continue

6.2 Selftest

Power I - O: switch on I "In operation"
The display is illuminated.
After switching on the supply voltage on the display for 2 seconds you will see the following:

- Copyright of the manufacturer
- Device type
- Software version
- Software date
- Test status

Battery charger and tester UL60
 Software UL60 V1.39 16.11.17 TEST OK

Simultaneously a signal announces that the device is ready for use.
In case the result of the selftest is a failure within the device the following information is shown on the display:

FAILURE : EQUIPMENT KEYBORD

This message is always in English language.

6.3 USB
 (not available in the UL60-L)

The device has got an inbuilt USB interface. This can be used to write the recorded data on an USB flash drive.

The data of the last battery measurements can be copied on the stick using menu choice „Write on USB flash drive ".

An easier method is to put in the USB flash drive before the end of the charging routine in order to transfer the data to the stick automatically after the end of the routine. You can keep the USB flash drive permanantely in the USB-interface. All data will be recorded automatically.

NOTE!

P

The device only records data of programs which were started using the key PRINT (printer started). Inside the UL60 the data for the last measurements will be deleted and the new data will be stored.

The USB flash drive can be taken out as soon as the program is finished and the display shows: „Data successfully written on USB flash drive ".

On the USB flash drive 2 files are kept:
The UL 60 automatically generates the filenames continuously from the date and time.

First file:

One text file (.rtf). This file can be opened in Word or OpenOffice. This file contains the same text as printed on the inbuilt printer. Additionally, the charging and discharging curves are displayed in case the program chosen contains both routines.

The UL60 can only write to USB sticks up to a size of 16GB.

```
NORTEC
    2014-15 UL60 V 1.0 16.06.15
    SN: 160001
                            DATE: 17.06.15
        BATTERY NO:
        OPERATOR NO:
    NOM. VOLTAGE: 24.00 V
        RATED CAP: 006.0 Ah
        PROGRAM: 020
NiCd battery (manufacturer inde-
pendent)
DISCHARGE
```

```
PROGRAM START
```

PROGRAM START
12:33:58
12:33:58
VOLTAGE = 27.19 V
P020:S1: 12:56:16
DISCHARGE
VOLTAGE = 26.18 V

```


Second file
The second file .csv (comma separated file) can be used in Excel or OpenOffice. This file contains the measurements:
\begin{tabular}{lr} 
Z; U; & I \\
\(1 ; 22.34 ;-25.03\) \\
\(1 ; 20.28 ;\) & -25.00 \\
\(2 ; 22.27 ;\) & 12.51 \\
\(2 ; 25.44 ;\) & 12.49 \\
\(2 ; 25.73 ;\) & 12.50
\end{tabular}

The column \(Z\) means cycle, followed by voltage and current. This data are recorded \(1 \times\) per minute.

The filename is built as follows:
1 letter for the year
2 number for the month
2 number for the day
2 number for the hour
1 number for the ten's place of a minute
The files contain as well date and time in their attributes.

\subsection*{6.4 RS232}

The RS 232 works with 9600 Baud,8,N,1. Tx can be found at Pin 2 and GND at Pin 7.
During a program routine, the following data will be transmitted:

730S3;04.12. 15:40;01,18;V;-03,99;A;000,3;AH;+0005;MIN;--,-;응 730S3;04.12. 15:41;01, 18;V;-03,99;A;000,3;AH;+0006;MIN;--,-; \({ }^{\circ} \mathrm{C}\)
\(\begin{array}{ll}0 & \infty \\ 0 & + \\ 0 & 0 \\ 0 & 0\end{array}\)
\(\square\)
\(\stackrel{0}{+}\)
(
\(\stackrel{-1}{\stackrel{-1}{\bar{\circ}}}\)
\begin{tabular}{l}
\(<\) \\
\hline \\
\multirow{2}{*}{} \\
0 \\
0 \\
0 \\
0
\end{tabular}
Current

Time
Temperature

The data can be recorded and saved with each final program routine. The format storage is compatible with programs like Excel or openOffice.
The data should be read in as „textfile *.CSV". Separator is a semicolon. After that you have to fill in the data "format cells". The format for the numbers to be given in is user-defined DD.MM. hh: mm.

\subsection*{6.5 Remote monitoring (not available in the UL60-L)}

The UL60 is provided with an Ethernet connection. After entering the parameter (see 7.2).

Adjust Ethernet IP-address, (see page 33) the data can be monitored from every browser. You just need to enter the IP-address of the UL60 in the address field.
\begin{tabular}{|c|c|c|}
\hline NOPR/EC & device: 01 & Unit dita \\
\hline NiCd battery & \multicolumn{2}{|l|}{(hanufacturer independent) 6.0 Ah: Discharge} \\
\hline
\end{tabular}

\section*{P020:S1: DISCHARGE}

Under „device data" you can see the data for the UL60:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|c|}{} & back \\
\hline SN: 160001 & 192.226 .226 .30 \\
\hline IP: & 255.255 .255 .0 \\
\hline Subnet: & 192.168 .226 .254 \\
\hline Gateway: & \(00-04-\mathrm{a3}-\mathrm{db}-0 \mathrm{~d}-\mathrm{f0}\) \\
\hline MAC: & 192.168 .226 .21 \\
\hline Printer: & \begin{tabular}{l} 
Nortec Electronics GmbH\&Co KG \\
An der Strusbek 32B \\
22926 Ahrensburg \\
Tel: + 49 4102 42002
\end{tabular} \\
\hline
\end{tabular}

Using NiCd batteries the measurements for the single cells can be shown as well:


After finishing the battery treatments, you can download the 2 data files to be secured on a USB flash drive.

\subsection*{6.6 Network printer (not available in the UL60-L)}

The UL60 can be configured to secure that after the end of the program the printer starts and you get a print on the network printer automatically. The print complies with the stored .rtf-file (see 6.3, page 24). Activate the printer via menu. Adjust Ethernet IP-address (see 7.2, page 33)

\section*{Nortec Electronics}
protocol
```

NORTEC
2014-15 UL60 V 1.0 16.06.15
SN: 160001
DATE: 18.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V
RATED CAP: 006.0 Ah
PROGRAM: 020
NiCd battery (manufacturer inde-
pendent)
DISCHARGE
PROGRAM START 12:33:58
VOLTAGE = 27.19 V
P020:S1: 12:56:16
DISCHARGE
VOLTAGE = 26.18 V
CURRENT = 05.99 A
CAPACITY = 2.2 Ah
TIME }=\mp@code{36.6 % %
PROGRAM MANUALLY FINISHED
=================================

```


All printers with PCL5 and TCP-IP-connection 9100 direct mode can be used, which means almost all network compatible laser printers.

\subsection*{6.7 Functions of printer programs}

The device is equipped with an inbuilt printer. Thus, it is possible to record the results of the treatments and to get a print for each battery. Independant from the charging routine the print menu can be changed at each time.

\section*{Printer programs}

\section*{General information}

Press the key PRINT in main menu or sub menu and you will get the last print again.

\section*{Program P: Printer and cell voltage measurement}

With the \(P\) program at any time a printout can be generated - without or within a program run, esp. in connection with the measurement and recording of the single cells voltages.

Distinguish between the following possibilities:
- Automatic printed record within a program
- Manual printed record within a program

NOTE: Automatic printed record is only possible in connection with an Cell-MeasurementAdapter
(not for UL60light)


Manual cell tester


Cell-Measurement-Adapter

\section*{NOTE FOR ALL PRINTER APPLICATIONS}

The capacity indication in \% is related to the rated capacity of the battery.
The printed line TEMPERATURE is just shown if the plus- and minus cable have a thermistor. For lead-acid batteries, both poles are measured and shown the value with the respectively higher temperature.

The single cells measurement is just possible using manual printed record and is announced by three short beeps. At this moment, it is possible to messure and to print the single cell voltages using a single cell tester. At maximum 99 cell measurements are possible.

As long as you hear a beep during cell measurement the cell is ok. The following cell testing starts after a valid measurement took place. The cell voltage is shown on display and will be printed at the same time.

If \(\mathbb{Z}\) is printed before the cell voltage, this means that the cell voltage is below the minimum voltage in the topping charge of a NiCd cell. These values can not be changed.
The value is normally 1.55 or 1.56 V per cell
exceptions:
HAWKER XLM battery: 1.58 V
MARATHON M \({ }^{3}\) battery: 1.60 V
SAFT VO / VP / VHP / VXP batteries: 1.50 V
The user is asked for the battery type in charging and maintenance programs of these manufacturers. The UL60 then sets the identification \(\mathbb{*}\) according to this input.

In case no single cells measurements have taken place the print lines CELL 01 to CELL xx and so on... will not be indicated.

If within a printer program data retrieval is not answerd the device switches to the next request within 30 seconds and finally back to the program routine.

\section*{Cell voltage recording}

\section*{сорукіgн NORTEC}

2014-15 UL60 V1.0 16.06.15
SN: 160001

DATE:
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE:
RATED CAP:
PROGRAM:
23.06.15

NiCd battery (manufacturer independent)
Maintenance

PROGRAM START
08:42:24
VOLTAGE \(=26.66 \mathrm{~V}\)

P420:S1: DISCHARGE 1 08:42:24
VOLTAGE \(=25.91 \mathrm{~V}\)
CURRENT \(=04.01 \mathrm{~A}\)
CAPACITY \(=000.4 \mathrm{Ah}\)
\(=010.0 \%\)
TIME \(=006 \mathrm{MIN}\)
* CELL 01: 1.292 V
* CELL 02: 1.291 V
* CELL 03: 1.294 V

\section*{7 System preferences}

Immediately after switching on the UL 60 carries out a device self-test. After that selftest and battery selection, open the menu by pressing \({ }^{*}\) the user can select language and time. The internal timer uses a capacitor which provides the timer with current for about a month as long as the device is not switched on.
In case a device is not in use for a long period you have to enter language and time again.
You get to an additional system menu using \(\boldsymbol{\rightarrow}\) :

\section*{\(\sqrt{ }\) select Batterytype : \(\sqrt{ }\)}

\section*{System preference}

At this place you find IP-address, device number and calibration.

\subsection*{7.1 Language, date, time}

\subsection*{7.1.1 Select language}


Press key i.E. 2 for English to keep the language until you want to change it again.
After switching on the next time the display will be in English language.
Following languages can be chosen:
- German
- English
- French *)
- Dutch *)
- Russian *)
- Danish *)
*) The help texts for these languages are displayed in English.
Additional languages are possible in case of customer request but require translations for display and print indication by the customer.

\title{
Select language, adjust time \\ DEUTSCH \(=1\) ENGLISH \(=2\) \\ FRANÇAIS= 3 NEDERLANDS \(=4\) \\ РУССКИЙ \(=5\) DANSK \(=6\)
}

\subsection*{7.1.2 Change date}

After the selection of the language enter the time.

\section*{Select language, adjust time}

\section*{DATE 00.00.00 \\ TIME 00:00:00}

Underneath the first position of the date indication you will see the cursor.
Press the key \(\underset{E_{\text {ENTRR }}}{E}\) to keep the entered date. The cursor moves to the date entry. Use the number keys ( \(1 . . .9\) to 0 ) to enter the present date dd : mm : yy

Incorrect data for the date will not be accepted.

\subsection*{7.1.3 Enter time}

Use the number keys (0 to 9) to enter the time hh: mm : ss.
Press the key
E back to the main menu. The counting of the seconds starts automatically.

\subsection*{7.2 Adjust Ethernet IP-address (not available in the UL60-L)}

Under „enter Ethernet IP-address" all relevant parameter for the ethernet interface are shown.

\subsection*{7.2.1 Enter IP-address}

\section*{System preferences}

\section*{Enter Ethernet IP-address \\ IP-address \\ 192.168.226.030}

At first enter IP-address. All UL60 devices must have a different IP-address. Usually the address starts as follows 192.168. Quite often it will be 192.168.0.xxx. Ask your network administrator for a free IP-number in your network.

The UL60 only works with IPs, not with DHCP. The IP has to be registered in the browser in order to receive the data for the UL60:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{device: 01} & Unit data \\
\hline \multicolumn{5}{|l|}{NiCd battery (nanufacturer independent) 6.0 Ah: Discharge} \\
\hline \multicolumn{5}{|c|}{P020:S1: DISCHARGE} \\
\hline \multirow[t]{2}{*}{Voltage} & \multirow[t]{2}{*}{Current} & \multirow[t]{2}{*}{Capacity} & \multirow[t]{2}{*}{Time} & Temperature \\
\hline & & & & Clock \\
\hline \multirow[t]{2}{*}{26.35 V} & \multirow[t]{2}{*}{05.99 A} & \multirow[t]{2}{*}{1.4 Ah} & \multirow[t]{2}{*}{14 Min} & \(--.{ }^{\circ} \mathrm{C}\) \\
\hline & & & & 12:48 \\
\hline
\end{tabular}

\subsection*{7.2.2 Enter subnet mask}

After entering the Ethernet IP-address fill in the netmask. Usually this is 255.255.255.0.

\subsection*{7.2.3 Adjust gateway}

After that adjust gateway. Often this is 192.168.0.1.
Using Microsoft Windows asked for (cmd.exe) (start, execute and "cmd"), the program "ipconfig /all" can be performed. It issues Gateway and subnet mask.

\subsection*{7.2.4 MAC address}

MAC stands for „Media Access-Control". It identifies each netwerk woldwide and is allocated just once. The MAC address is a fixed one and can not be changed by the user.

\section*{System preferences}

\section*{Adjust Ethernet IP-address \\ MAC-address \\ 00.00.00.00.00.02}

\subsection*{7.2.5 Adjust network printer}

The UL60 can be configured to start a record on a network printer at the end of the program by pressing the key

Network-capable laser printers are addressed with the printer language PCL5e /c. The communication is done by TCP/IP Port 9100.

The network printer is activated by entering the valid IP-address.
Entering 0:0:0:0 deactivates the printer.

\section*{System preferences}

\section*{Adjust Ethernet IP-address}

Printer (off = 0 ) 192.168.226.021

\subsection*{7.2.6 Device number}

As for device numbers, you can use numbers from 01 to 99 in order to distinguish between the different devices.
If you want to demonstrate several devices over a network, it is recommended to built a small file
```

<html>
<head>
 <title>UL60</title>
</head>
<frameset rows="50%,50%">
 <frameset cols="50%,50%">
 <frame src="http://192.168.0.70">
 <frame src="http://192.168.0.71">
 </frameset>
 <frameset cols="50%,50%">
 <frame src="http://192.168.0.72">
 <frame src="http://192.168.0.73">
 </frameset>
</frameset>
</html>
```
and save it under a file name ending with .html. If you open the file you can see 4 different devices of UL60 on the screen. Enter the different IP-addresses of the 4 devices under http://.

\subsection*{7.3 Calibration / Unit number,}

The menu item "Calibration / Unit-No." is password protected. Changes in this part should be performed by trained personnel only.

\subsection*{7.4 Volume control beeper}

The volume of the built-in signal generator can be changed in the Volume menu item.

\section*{8 Program selection}

\subsection*{8.1 Principles for program selection}

A treatment in UL60 is defined by a three-digit number.
- The first digit stands for the kind of treatment.
- Digits two and three define the battery type.

\section*{Kind of treatment}

\section*{Discharge (= Treatment 0)}

Each battery with an effective voltage in between the device limits of 40 V can be discharged with the UL60 with maximum 60 A . This happens in the reverse charging structure of the device so that the discharging goes to 0 Volt. The energy taken from the battery will go out in the surroundings via heat sink and fan.

\section*{Initial commissioning (= Treatment 1)}

The batteries - depending on their technology - are delivered by the manufacturers charged or discharged. Often the batteries are delivered directly to the warehouses or other storage spaces. That is why the instructions from the manufacturers for the initial operation can be different. The parameters for the initial operation are saved inside the device UL60 and have to be reviewed before operation according maintenance manual of battery manufacturers. In case of discrepancies, the information provided by the battery manufacturer applies.

\section*{Charge (= Treatment 2)}

Choosing the treatment 2 the UL60 applies the charging programs according to the battery type as requested from the manufacturers or the relevant users. For the optimum use of the battery the charging programs are executed automatically.

During charging process the battery data are recorded and checked for validity.
Especially the following data:
- Initial voltage
- Final voltage reached
- Current at the beginning of the charging
- Current at the end of the charging
- Charging time
- Temperature

\section*{Capacity Test (= Treatment 3)}

The program is used for analysing the capacity of a NiCd-battery according to manufacturer's instructions. After the performed capacity test the battery is discharged!

\section*{Maintenance (= Treatment 4)}

This program is used to analyse lead acid-, NiCd- and Lithium batteries. Relevant data for battery analysis will be recorded and illustrated. The actual capacity will be determined.

After completion of the treatment maintenance, the battery is fully charged.
Selection of the battery type passes through several testcycles. From time to time maintenance works at the batteries are necesssary. The maintenance manuals of the battery manufacturer always apply.

\section*{I-Charge (= Treatment 5)}

Using the program I-charge allows a free selection of charging current and charging time span.

\section*{Deep Discharge (= Treatment 6) (not available in the UL60-L)}

This program is used to deep discharge the battery according to the manufactuerers instructions.

\section*{Reconditioning (= Treatment 7) (not available in the UL60-L)}

This program is used for the reconditioning of a NiCd-battery according to manufacturers instructions.

\section*{Constant Voltage Supply (= Treatment 8)}

Using this treatment, the UL60 serves as a constant voltage supply.
Other battery = (battery type 00)
The device works as a laboratory power suppy with a performance of \(40 \mathrm{~V} / 60 \mathrm{~A}\). Voltage and current can be chosen in steps from \(0.01 \mathrm{~V} / 0.01 \mathrm{~A}\).

With battery \(=\) (battery type \(10-24\) )
If a battery type \(>0\) is chosen, the device automatically selects the float-voltage for the chosen battery which allows an unlimited connection of the battery to the UL60 without damaging it.

\subsection*{8.2 The battery types}

All important battery types are already included in the UL60. Rechargeable batteries can be tested and charged as well using the available treatments and the appropriate parametres
- 00: Other battery
- 10: Lead acid battery sealed MIL (with fixed electrolyte AGM or GEL)
-
11: Lead acid battery sealed commercial (with fixed electrolyte AGM or GEL)
- 12: Valve regulated lead acid aircraft battery
- 16: Lead acid battery vented commercial
\(\bullet\)
19: Lead acid battery (free input)
20: NiCd battery (manufacturer independent)
21: NiCd battery HAWKER
22: NiCd battery Saft
23: NiCd battery NKBN
24: NiCd battery MARATHON

The following treatments are available:
- 0: Discharge
-
1: Initial commissioning
2: Charge
3: Capacity Test
4: Maintenance
5: I-Charge
6: Deep Discharge (not available in the UL60-L)
7: Reconditioning (not available in the UL60-L)
8: Constant Voltage Supply (Power-supply)

\subsection*{8.3 The program - Matrix}

The different charging programs result from the 9 treatments: ( 0 bis 8 ) and the 11 battery types.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 00
Other batt. & \[
\begin{gathered}
10 \\
\text { Lead } \\
\text { ALL } \\
\text { MIL }
\end{gathered}
\] & \begin{tabular}{l}
11 \\
Lead \\
ALL \\
comm
\end{tabular} & \begin{tabular}{l}
12 \\
Lead \\
Avia- \\
tion
\end{tabular} & 16 Open Lead comm & \begin{tabular}{l}
19 \\
Lead \\
free \\
entry
\end{tabular} & \[
\begin{gathered}
20 \\
\mathrm{NiCd}
\end{gathered}
\] & \begin{tabular}{c|c|}
\hline 21 \\
NiCd \\
HAW- \\
KER
\end{tabular} & \[
\begin{gathered}
\hline 22 \\
\text { NiCd } \\
\text { SAFT }
\end{gathered}
\] &  & \begin{tabular}{c|c|}
\hline 24 \\
NiCd \\
MAR \\
ATHO \\
N \\
\hline
\end{tabular} \\
\hline 0 Discharge & 000 & 010 & 011 & & 016 & 019 & 020 & 021 & 022 & 023 & \\
\hline 1 Initial commissioning & & 110 & 111 & & 116 & & 120 & 121 & & & 124 \\
\hline 2 Charge & & 210 & 211 & 212 & 216 & 219 & 220 & 221 & 222 & 223 & 224 \\
\hline 3 Capacity Test & & & & 312 & & & & 321 & 322 & 323 & 324 \\
\hline 4 Maintenance & & 410 & 411 & & 416 & 419 & 420 & 421 & 422 & & 424 \\
\hline 5 I-Charge & & 510 & 511 & & 516 & & 520 & & & & \\
\hline 6 Deep Discharge & & & & & & & & 621 & 622 & 623 & 624 \\
\hline 7 Reconditioning & & & & & & & & 721 & 722 & & 724 \\
\hline 8 Constant voltage & 800 & 810 & 811 & & 816 & & 820 & 821 & 822 & & \\
\hline
\end{tabular}

\subsection*{8.4 Battery data entry}

\subsection*{8.4.1 General information}

The charging program of the UL60 depends on the entry of the battery type which shall be treated and the selection of the treatment. For correct use of the program entry of the size of the connected battery type is necessary.

\section*{\(\sqrt{ } \sqrt{ }\) select Batterytype: \(\curvearrowleft\)}

\section*{21: NiCd battery HAWKER \(\leftarrow=\) previous \(\rightarrow=\) next \(E=\) select battery}

the following procedures are available::
- Discharging
- Initial operation
- Charging
- Capacity test
- Rest discharging
- Reconditioning
- Constant voltage supply

After choosing the battery type you are asked for the kind of treatment:

\section*{21: NiCd battery HAWKER \\ \(\checkmark\) select Batteryprocessing: § \\ P0: Discharge \\ \(\leftarrow=\) previous \(\rightarrow=\) next \(E=\) select program}

\section*{Discharge without Cell shorting for HAWKER with \(\mathrm{C}_{1}\)}

Step1: Discharging enter \(\mathrm{C}_{1}\) until voltage of 1 V for each cell is reached.
After about 48 minutes you are asked for measurement of single cells voltages.
Continue with discharging enter \(\mathrm{C}_{1}\) until the voltage of 1 V for each cell is reached.

\subsection*{8.4.2 Work with „Other battery" P: 00}

With battery type 00 (Other battery) you can maintain individual batteries, such as Lithium or ZnO . The treatments 8 constant voltage source and 0 discharging can be selected.

\subsection*{8.4.3 Work with lead batteries}

All battery types starting with 1 x respond. In particular, these are:
Type 10: Lead acid battery sealed MIL
Type 11: Lead acid battery sealed commercial
Type 12: \(\quad\) Valve regulated lead acid aircraft battery
Type 16: Lead acid battery vented commercial
Type 19: Lead acid battery (free input)
Choose the type using the following keys \(\leftarrow \rightarrow\)
Choose the
and confirm with pressing the key ENTER afterwards select kind of treatment.
For example, select the charging of a military sealed lead battery:

Use this key
 to get to the desired kind of treatment and confirm by pressing the key

On dispay you will see:

\section*{10: Pb battery sealed MIL}

\section*{P410: > Please enter parameter: RATED VOLTAGE: 00.00 V}

Enter the nominal voltage of the battery. You find it on the identification plate of the battery.

\section*{NOTE:}

Lead batteries usually consist of several cells of 2 V each.
Commercially common:
- 2 V cells
- \(\quad 6 \mathrm{~V}\) batteries
- 12 V batteries
- \(\quad 24 \mathrm{~V}\) batteries

The device only accepts 2.0 V and the multiple. All other entry will be rejected as defective.
Confirm the entered voltage by pressing \(\underset{E \in \mathbb{E} \text {.ER }}{\boldsymbol{E}}\). The display shows:

\section*{10: Pb battery sealed MIL}

\section*{P410: > Please enter parameter: RATED CAPACITY? 000.0 Ah}

The nominal capacity is measured in ampere hours (Ah). The energy content of the cell determines at the maximum admitted current for charging and discharging.
The identification plate of the battery contains the capacity information. Depending on the choice of the level of the discharging current the batteries of identical construction types have different capacities.
Rule of thumb: If the chosen discharging current is higher, the capacity available will be lower.
Military lead batteries are often defined according to the " 5 hour-capacity".
The definition of the capacities for civil batteries is based on the area of application and the norm to be applied differs from 10 hours to 100 hours discharging currents. The treatments which are implemented in the UL60 consider these problems. After entering the capacity possible in steps of 0.1 Ah
```

 E
 Confirm with ENTER
and a start menu will be displayed:

```

\section*{10: Lead battery sealed MIL}

\section*{Program: Maintenance}

Start: \(\boldsymbol{P}=\) with print \(\boldsymbol{\lambda}=\) without print \(\boldsymbol{9}=\) time

\subsection*{8.4.4 Work with NiCd batteries}

All open batterie types starting with numbers 2 x respond.
In detail this are:
```

- 20: NiCd battery (manufacturer independent) E.g. Changhong (20GNCxx) or HBL (NCSP...)
- 21: NiCd battery HAWKER
- 22: NiCd battery Saft
- 23: NiCd battery NKBN
- 24:NiCd battery MARATHON

```

After chosing the type using the following buttons
 confirm with E ENTER and select the treatment.
All treatments can be selected.
For chosing the treatment „P4: Maintenance" display is as follows:

\section*{20: NiCd battery (manufacturer independent)}

\section*{P420: > Please enter parameter: NUMBER Of CELLS? 00 CELLS}

For NiCd batteries enter the number of cells. The battery voltage is calculated by the device.

\section*{NOTE:}

The NiCd-cell has got a nominal voltage of 1.2 V . In order to completely charge it a voltage of \(1.55 \mathrm{~V} /\) cell has to be reached. In opposition to the lead batteries unusual number of cells is possible. In addition to the usual number of cells which lead to volt values of comparable lead batteries you will find unusual number of cells.
In contrast to lead batteries sometimes exist very different cell counting. In addition to the "usual" numbers of cells that match to comparable voltage level of lead-acid batteries, there are "Rare types" as well.

Excamles for number of cells:
\begin{tabular}{llr}
5 & Cells & \(5 \times 1.2=6 \mathrm{~V}\) battery \\
10 & Cells & \(10 \times 1.2=12 \mathrm{~V}\) battery \\
20 & Cells & \(20 \times 1.2=24 \mathrm{~V}\) battery
\end{tabular}

\section*{NOTE:}

Enter the number of cells for NiCd-batteries with the utmost care in order to prevent damage of the battery.

For determination of the maximum currents the capacity of the battery has to be indicated in Ah.

\section*{20: NiCd battery (manufacturer independent)}

\section*{P420: > Please enter parameter: RATED CAP: 000.0 Ah} the start menu is shown on the dispay.

\section*{20: NiCd battery (manufacturer independent)}

\section*{Program: Maintenance}

\section*{Start: \(P=\) with print \(=\) without print}
\(\square\) B again be selected.
Entering \(\square\) starts the testing routine with discharging with 1 hour current as the first step for 6 minutes. Enter \(\underset{P R R T}{P}\) to request a printed record. Enter the following details
- battery number
- user number
and confirm with \(\underset{E N T E R}{E}\).
- Enter PRINT starts a testing routine after battery number and user number have been given in. Confirm by pressing the key

In case a cell tester is connected the measurement of the cell voltage of the NiCd batteries takes place automatically.

By pressing the button

again you can start a printed record in between. Pressing the red start key once starts the recording of the measurement of the cell voltages on the positive cell probe.

\subsection*{8.5 The display screen for program 420}

For a military NiCd battery (manufacturer independent) = Type 20 with a nominal voltage of 24 V and 4 Ah the testing cycle \(=\) Treatment 4 is shown as an example.

Program No 420 follows after entering the user specific data. Confirm with

PRINT and the following display is shown:

\subsection*{8.5.1 Program 420 Step 1}


\subsection*{8.5.2 Program 420 Step 2}

\section*{NiCd battery (manufacturer independent)}

1 rogram: Maintenance

Kind of treatment
Battery type
Step number
Step type
19:50:00
24.64 V
04.00 A
00.5Ah 007MIN

4 = Maintenance
\(20=\) NiCd battery (manufacturer independent)
= S2
= I-CHARGE 1
= present time
= present battery voltage
= present charging current
The charging current in the test routine for NiCd batteries is selected in a way that the capacity will be charged within 1 h .4 A if it is the correct current for a 4 Ah battery.

\subsection*{8.5.3 Program 420 Step 3}


Program number Kind of treatment Battery type
2 Step number
3
Step type
4 20:42:38
\(5 \quad 31.05 \mathrm{~V}\)
\(6 \quad 0.40 \mathrm{~A}\)

7 4.02 Ah

4 = Maintenance
\(20=\) NiCd battery (manufacturer independent)
= S3
= TOPPING CHARGE 1
= present time
\(=\) present battery voltage there is no voltage limit to 31 V .
= present charging current
The topping charge with 10-hours current
\(4 \mathrm{Ah} / 10 \mathrm{~h}=0.4 \mathrm{~A}\) takes 1.5 hours. The reason for doing this is to equalize the voltages of the cells.
The display of the capacity continues which means the inloaded capacity during I-CHARGE 1 plus capacity for TOPPING CHARGE 1.

\subsection*{8.5.4 Program 420 Step 4}


Program number Kind of treatment Battery type
Step number
Step type
23:34:38
24.05 V
4.0 A
3.60 Ah
\(\begin{array}{ll}7 & \text { 3.60 Ah } \\ 8 & \text { 0054 MIN }\end{array}\)

4 = Maintenance
\(20=\) NiCd battery (manufacturer independent)
= S4
= DISCHARGE 2
= present time
= present battery voltage
= present discharging current
The testing current for NiCd batteries is \(1 \mathrm{C}(\mathrm{A})\) which means a current is chosen which discharges the battery with a capacity of 4 Ah within 1 hour completely. The current is 4 A .
= actual taken capacity at time of printing. DISCHARGE 2 the battery will be discharged with 1 hour current = 4 A until the battery voltage is 1 V for each cell which means decreased to 20 V .
The time for discharging until this display is hown takes 54 minutes.
At the end of step 4 a record is done automatically when the shut down voltage of 20 V is reached. The actual voltage recovers immidiately after stopping discharge current.

\subsection*{8.5.5 Program 420 Step 5}


\subsection*{8.5.6 Program 420 Step 6}


After 115 minutes an acoustic signal sounds.
> The cell voltages must be taken using the cell tester.
> Electrolyte has to be adjusted with destilled water.

\section*{9 Tabular overview of the program procedures}

The UL60 has treatment programs for several battery types implemented. Special cases not covered by these programs, can be maintained by the programs for battery types "NiCd battery (manufacturer independent)" and "Pb battery (free input)". With the programs "Pb battery (free input)" you can individual set the parameters within defined limits. With the program "I-charge" for "NiCd battery (manufacturer independent)" you can set the cut-off voltage and charging time. A program for discharging with free input of all parameters is in the menu item "Other battery" available.

For batteries of manufacturer "Changhong (20GNCxx)" and HBL (NCSP ...), you can use the "Charge" program under "NiCd Battery (manufacturer independent)" and the \(\mathrm{C}_{2}\) setting. The Capacity Test can be done using the program "NiCd battery (manufacturer independent)".

The initial operation of the 20GNCxx batteries is possible with the "Initial commissioning" program HAWKER (input 10 hours).

The following programs were created with the utmost care according to the maintenance manuals of the battery manufacturers, but are offered without guarantee. Before applying the below programmed programs this must be checked for compliance with currently valid maintenance manuals of the battery manufacturer. If in doubt or in case of deviations the currently valid maintenance manual of the battery manufacturer always applies.

For all programs the following restrictions apply:
Sealed lead batteries:

Minimum capacity:
Maximum capacity:
Minimum nominal voltage:
Maximam nominal voltage:
Nominal voltage to be dived by
Vented lead batteries:
Minimum capacity:
Maximum capacity:
Minimum nominal voltage:
Maximum nominal voltage \(\quad 30 \mathrm{~V}\)
Nominal voltage to be dived by 2
NiCd batteries:
Minimum capacity: 1 Ah
Maximum capacity:
Minimum number of cells:
Maximum number of cells:
Nominal voltage to be dived by

2 Ah 900 Ah
2 V
30 V
2

10 Ah
900 Ah
2 V
30 V

230 Ah 1.2

Nominal
1 (nominal voltage: 1.2 V )
24 (nominal voltage: 28.8 V )

The UL60 can charge / discharge at maximum 60 A. If a battery is connected which usually requires a higher current it will be charged / discharged with 60 A . The monitored times will be automatically adjusted by the program.

In case cables with temperature sensors are used the program shut down will take place under the following conditions:
- \(\quad\) Temperature \(>65^{\circ} \mathrm{C}\)
- Temperature increase since program start for more than \(40^{\circ} \mathrm{C}\)

\subsection*{9.1 Discharge}

The discharging of the batteries according to manufacturers instructions takes place using the program „PO: DISCHARGE". In addition to the program „PO: DISCHARGE" for some NiCd battery types the programs „P6: Deep Discharge" and „P7: Discharge to 23 V" are available.

\section*{Example:}

```

copyright NORTEC
2014-15 UL60 V 1.0 16.06.15
SN: }16000

```
    DATE: 28.06.15
    BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V
    RATED CAP: 040.0 Ah
    PROGRAM: 022
NiCd battery SAFT
DISCHARGE
PROGRAM START 10:38:02
    VOLTAGE \(=25.41 \mathrm{~V}\)
P022:S1: 11:26:53
DISCHARGE
    VOLTAGE \(=20.00 \mathrm{~V}\)
    CURRENT \(=40.01 \mathrm{~A}\)
    CAPACITY \(=32.07 \mathrm{Ah}\)
            \(=080 \%\)
        TIME \(=048 \mathrm{MIN}\)

PROGRAM AUTOMATICALLY FINISHED
==============================

\subsection*{9.1.1 Program 000: Discharge (without data specification of a battery)}

\section*{00: Other battery \\ \(\checkmark\) select Batteryprocessing: 』 \\ P0: Discharge}

\section*{Enter:}
- Number of cells
- Nominal voltage (only relevant for the printout)
- Rated capacity
- Discharging current
- Cut-off voltage per cell

\section*{Step 1:}

Discharging with discharging current until the cut-off voltage inserted by the user for each cell multiplied by the number of cells is reached.

\section*{End of program}

\subsection*{9.1.2 Program 010: Discharge Pb battery sealed MIL}

\section*{10: Pb battery sealed MIL \\ § select Batteryprocessing: 』 P0: Discharge}

\section*{Enter:}
- \(\quad\)\begin{tabular}{l} 
Nominal voltage \\
Rated capacity
\end{tabular}

\section*{Step 1:}

Discharging with \(\mathrm{C}_{5}\) until a voltage of 1.5 V for each cell is reached.

\section*{End of program}

\section*{Example:}

A 12 V battery with 100 Ah is connected.
The battery will be discharged with 20 A to 9 V .

\section*{Time monitoring:}

Discharging maximum 6 hours.

\subsection*{9.1.3 Program 011: Discharge Pb battery sealed commercial}

\section*{11: Pb battery sealed commercial}

\section*{』 select Batteryprocessing: 』 P0: Discharge}

Enter:
- Nominal voltage
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{10}\) until a voltage of 1.8 V for each cell is reached.

\section*{End of program}

\section*{Example:}

A 12 V battery with 100 Ah is connected.
The battery will be discharged 10 A to 10.8 V .
Attention! Some battery manufacturers call the criteria for shut down 80 \%-limit which means just \(80 \%\) capacity of the battery can be taken out of the battery without damaging it.

\section*{Time monitoring:}

Discharging maximum 12 hours.

\subsection*{9.1.4 Program 016: Discharge Pb battery vented commercial}

\section*{16: Pb battery vented commercial \\ \(\checkmark\) select Batteryprocessing: „ P0: Discharge}

\section*{Enter:}
- \(\quad\)\begin{tabular}{l} 
Nominal voltage \\
Rated capacity
\end{tabular}

\section*{Step 1:}

Discharging with \(\mathrm{C}_{20}\) until a voltage of 1.8 V for each cell is reached.

\section*{End of program}

\section*{Example:}

Connected is a 12 V battery with 100 Ah . The battery will be discharged with 5 A to 10.8 V . Attention! Some battery manufacturers call the criteria for shut down \(80 \%\)-limit which means just \(80 \%\) capacity of the battery can be taken out of the battery without damaging it.

\section*{Time monitoring:}

Discharging maximum 24 hours.

\subsection*{9.1.5 Program 019: Discharge Pb battery (free input)}

\section*{19:Pb battery (free input)}

\section*{』 select Batteryprocessing：』 PO：Discharge}

Enter：
－Nominal voltage
－Rated capacity
－Discharging current C1，C2，C5，C10 or C20
－Discharging final voltage of each cell（selectable 1．5－1．9 V）

\section*{Step 1：}

Discharging until the voltage of final discharging voltage for each cell is reached．

\section*{End of program}

Time monitoring：
Discharging maximum 24 hours．

\section*{9．1．6 Program 020：Discharge NiCd battery（manufacturer independent）}

\section*{20：NiCd battery（manufacturer independent） \\ 』 select Batteryprocessing：』 \\ P0：Discharge}

\section*{Enter ：}
－Number of cells
－Rated capacity
－\(\quad \mathrm{C}_{1}, \mathrm{C}_{2}\) or \(\mathrm{C}_{5}\)
－Cut－off voltage per cell

\section*{Step 1：}

Discharging with \(\mathrm{C}_{1}, \mathrm{C}_{2}\) or \(\mathrm{C}_{5}\) until cut－off voltage for each cell is reached．

\section*{End of program}

\section*{Example：}

Connected is a 12 V battery with 40 Ah ．
The battery will be discharged with 40 A to 10 V ．
Time monitoring：
Discharging maximum 90／180／450 minutes．

\section*{9．1．7 Program 021：Discharge NiCd battery HAWKER}

Name according to manual：Discharge（without Cell shorting）for HAWKER with \(\mathrm{C}_{1}\)

\title{
21：NiCd battery HAWKER \\ 』 select Batteryprocessing：』 P0：Discharge
}

\section*{Enter：}
－Number of cells
－Rated capacity

\section*{Step 1：}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached．
After 48 minutes a signal asks for the measurement of the single cells voltages．

\section*{End of program}

\section*{Example：}

Connected is a 24 V battery with 40 Ah ．The battery will be discharged with 40 A to 20 V ．

\section*{Time monitoring：}

Discharging maximum 90 minutes．

\section*{9．1．8 Program 022：Discharge NiCd battery SAFT}

Name according to manual：Deep Discharge（without Cell shorting）for SAFT with \(\mathrm{C}_{1}\)

\section*{22：NiCd battery SAFT \\ 』 select Batteryprocessing：』 \\ P0：Discharge}

\section*{Enter：}
－Number of cells
－Rated capacity

\section*{Step 1：}

Discharging with \(\mathrm{C}_{1}\) to a voltage of 1 V for each cell．

\section*{Example：}

Connected is a 24 V battery with 40 Ah ．The battery will be discharged with 40 A to 20 V ．

\section*{End of program}

Time monitoring：
Discharging maximum 90 minutes．

\section*{9．1．9 Program 023：Discharge to 23 V NiCd battery NKBN}

Name according to manual: Discharge down to voltage of 23 V for HKБH

\section*{23: NiCd battery NKBN \\ 乞 select Batteryprocessing: 』 P0: Discharge to 23 V}

Enter:
- Number of cells
- Rated capacity

\section*{Step 1:}

Discharging with \(0.4 \mathrm{C}_{1}\) until a voltage of 1.15 V for each cell is reached.
In case no automatc cell tester is connected:
Shortly before the end a signal asks for the measurement of the single cells voltages.
Otherwise: cell measurement takes place automatically.

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery will be discharged with 16 A to 23 V .

\section*{Time monitoring:}

Discharging maximum 4 hours.

\subsection*{9.2 Initial commissioning}

\subsection*{9.2.1 Program 110: Initial commissioning Pb battery sealed MIL}

\section*{10: Pb battery sealed MIL \\ 』 select Batteryprocessing: 』 \\ P1: Initial commissioning}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

In case voltage is \(<1.5 \mathrm{~V}\) for each cell the message is as follows:
\(\mathrm{U}<1.5 \mathrm{~V}\) : select program 410

Otherwise:
Discharging with \(\mathrm{C}_{5}\) until a voltage of 1.5 V for each cell is reached.

\section*{Step 2:}

I-charge with \(0.4 \mathrm{C}_{1}\) until a charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 3:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current decreased to \(0.02 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Time monitoring:}

I- and U-charge maximum for 8 hours, capacity maximum1.5 \(\times \mathrm{C}\)
In case charged capacity is \(<0.9 \mathrm{C}\) : failure message: CAPACITY TOO LOW

\subsection*{9.2.2 Program 111: Initial commissioning Pb battery sealed commercial}

\section*{11: Pb battery sealed commercial \(\bumpeq\) select Batteryprocessing: 』 P1: Initial commissioning}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

In case voltage is \(<1.5 \mathrm{~V}\) for each cell the message is as follows:
\(\mathrm{U}<1.5 \mathrm{~V}\) : choose program 411

Otherwise:
Discharging with \(\mathrm{C}_{5}\) until a voltage of 1.5 V for each cell is reached.

\section*{Step 2:}

I-charge with \(0.36 \mathrm{C}_{1}\) until a charging voltage of \(2.4 \mathrm{~V} \times\) numbers of cells is reached.

\section*{Step 3:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current decreased to \(0.04 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Time monitoring:}

I- and U-charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)
In case inloaded capacity is \(<0.8 \mathrm{C}\) : failure message: CAPACITY TOO LOW.

\subsection*{9.2.3 Program 116: Initial commissioning Pb battery vented commercial}

\section*{16: Pb battery vented commercial \\ 』 select Batteryprocessing: 』 \\ P1: Initial commissioning}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

The message is as follows:

\section*{CHECK ELECTROLYTE LEVEL WAIT 20 MINUTES E=CONTINUE}

The program waits at maximum for 20 minutes.
In case the voltage is \(<1.5 \mathrm{~V}\) for each cell the message is as follows:

\section*{U<1.5 V: select program 416}

Otherwise:
Discharging with \(\mathrm{C}_{5}\) until a voltage of 1.5 V for each cell is reached.

\section*{Step 2:}

I-charge with \(0.25 \mathrm{C}_{1}\) until a charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 3:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current is decreased to \(0.04 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Time monitoring:}

I- and U-charge at maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)
In case inloaded capacity \(<0.8 \mathrm{C}\) : failure message: CAPACITY TOO LOW.

\subsection*{9.2.4 Program 120: Initial commissioning NiCd battery (manufacturer independent)}

\section*{20: NiCd battery (manufacturer independent) \\ 』 select Batteryprocessing: 』 P1: Initial commissioning}

Enter:
- Number of cells
- Rated capacity

\section*{Step 1:}

Charging with \(\mathrm{C}_{1}\) until a voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached within at maximum 1 hour.

\section*{Step 2:}

Discharging with \(\mathrm{C}_{1}\) to \(1 \mathrm{~V} \times\) number of cells within at maxium 30 minutes.

\section*{Step 3:}

Charging with \(\mathrm{C}_{1}\) until a voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 4:}

Topping charge \(\mathrm{C}_{5}\) for 1.5 hours.

\section*{Step 5:}

Discharging with \(\mathrm{C}_{1}\) to \(1 \mathrm{~V} \times\) number of cells at maximum 30 minutes.

\section*{Step 6:}

Charging with \(\mathrm{C}_{1}\) until a charging voltage of \(1.55 \mathrm{~V} \times\) numbers of cells is reached.

\section*{Step 7:}

Topping charge \(\mathrm{C}_{5}\) for 1.5 hours.
15 minutes before the end of the topping charge a signal asks for the measurement of the single cells voltages and to control the electrolyte level.

\section*{End of program}

\section*{Time monitoring:}

Charging for maximum 90 minutes. Capacity maximum 1.6 C.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} / \mathrm{cell}\) during charging, error message:
minus delta U detected

\subsection*{9.2.5 Program 121: Initial operation NiCd battery HAWKER}

\section*{Name according to manual: Commissioning charge (8 h)}

This program also can be performed for maintenance charge (7h).

\section*{21: NiCd battery HAWKER \\ 乞 select Batteryprocessing: 』 P1: Initial commissioning}

\section*{Enter:}
- Number of cells
- Rated capacity
- Charging time span (set value: 8 hours)

\section*{Step 1:}

Charging with \(\mathrm{C}_{5}\) for 8 hours or the time given in (eg. maintenance charge 7 h ).
15 minutes before the end of the charging a signal asks for the measurement of the single cells voltages and to control the electrolyte level.

\section*{End of program}

After the end of the program the battery needs to cool down to room temperature. Subsequent proceed with program Capacity Test 321 or Maintenance 421 according to Hawker instructions.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} /\) cell during charging, error message:
minus delta U detected

\subsection*{9.2.6 Program 122: Initial operation NiCd battery SAFT}

\section*{Name according to manual: Constant Current Charge for SAFT with \(\mathbf{C}_{\mathbf{2}}\)}

\section*{22: NiCd battery SAFT \\ § select Batteryprocessing: 』 P1: Initial commissioning}

\section*{Enter:}
\begin{tabular}{ll} 
Number of cells \\
\(-\quad\) & Rated capacity \\
ULM Battery or not
\end{tabular}

\section*{Step 1:}

Charging with \(\mathrm{C}_{2}\) until a charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 2:}

Topping charge \(\mathrm{C}_{10}\) for 4 hours.
30 minutes before the end of the topping charge a signal asks for the measurement of the single cells voltages and to control the electrolyte level
Cells with a voltage below 1.50 V (ULM: 1.55 V ) are marked with a *.

\section*{End of program}

\section*{Time monitoring:}

Charging maximum 150 minutes.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} /\) cell during charging, error message:
minus delta U detected

\subsection*{9.2.7 Program 124: Initial operation NiCd battery MARATHON}

\section*{Name according to manual:}

Charge (Constant current) Step IA for MARATHON with main charge current

\section*{24: NiCd battery MARATHON \\ 』 select Batteryprocessing: 』 \\ P1: Initial commissioning}

\section*{Enter:}
- Number of cells
- Rated capacity
- Charging current main charge according MARATHON manual

\section*{Step 1:}

Charging with charging current main-charge until the charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached minimum 150 minutes.
In case the cell-voltage is below 1.55 V charging continues for 5 minutes and again you are requested to measure the cell voltage otherwise continue with Step 2.
In case the number of the measured cells does not conform with the number of cells - for example a cell has been measured twice - the device can not decide what to do and asks the user whether all cells are > 1.55 V . Enter: \(1=\mathrm{YES} 0=\mathrm{NO}\).

\section*{Step 2:}

Topping charge with \(0.4 \times\) charging current main-charge for 2 hours.
15 minutes before the end of the topping charge a signal requests to control the electrolyte level.
Before the end of the topping charge a signal requests the measurement of single cells voltages.

\section*{End of program}

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} / c e l l\) during charging, error message: minus delta U detected


\subsection*{9.3 Charge}

With program „Charge" the batteries are charged according to manufacturers instructions. Examples:

\section*{Lead battery}


\section*{copv̌IGнt NORTEC}

2014-15 UL60 V 1.0 16.06.15
SN: 160001

DATE: 28.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 12.00 V
RATED CAP: 100.0 Ah
PROGRAM: 210
Pb battery sealed MIL
Charge
PROGRAM START 10:00:--------------------02
VOLTAGE \(=12.21 \mathrm{~V}\)
P210:S1: 10:03:53
TOPPING CHARGE
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=002.0 \mathrm{Ah}\)
\(=002 \%\)
TIME \(=003 \mathrm{MIN}\)
P210:S2: 12:03:53
I-CHARGE
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=82.07 \mathrm{Ah}\)
= \(082 \%\)
TIME \(=120 \mathrm{MIN}\)
P210:S3: 13:07:53
U-CHARGE
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=02.01 \mathrm{~A}\)
CAPACITY \(=100.7 \mathrm{Ah}\)
= \(100 \%\)
TIME \(=184 \mathrm{MIN}\)
P210:S4: 15:08:25
TOPPING CHARGE
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=1.21 \mathrm{~A}\)
CAPACITY = 103.0 Ah
= \(103 \%\)
TIME \(=120 \mathrm{MIN}\)
PROGRAM AUTOMATICALLY FINISHED
===============================

\section*{NiCd-battery}

```

copraght NORTEC
2014-15 UL60 V 1.0 16.06.15
SN: }16000

```

DATE: 28.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V
RATED CAP: 040.0 Ah
PROGRAM: 222
NiCd battery SAFT
Charge
PROGRAM START 08:13:02
VOLTAGE \(=25.09 \mathrm{~V}\)
--------------------------------P222:S1: 09:17:36
I-CHARGE
VOLTAGE \(=31.39 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=042.7 \mathrm{Ah}\)
\(=106 \%\)
TIME \(=064 \mathrm{MIN}\)

P222:S2: 13:02:43
TOPPING CHARGE
VOLTAGE \(=33.00 \mathrm{~V}\)
CURRENT \(=04.01 \mathrm{~A}\)
CAPACITY \(=057.7 \mathrm{Ah}\)
\(=144 \%\)
TIME \(=225 \mathrm{MIN}\)

CELL 01: 1.612 V
CELL 02: 1.610 V
1
CELL 20: 1.600 V

P222:S2: 13:17:36
TOPPING CHARGE
\[
\text { VOLTAGE = } 32.99 \mathrm{~V}
\]

CURRENT \(=04.01 \mathrm{~A}\)
CAPACITY \(=058.7 \mathrm{Ah}\)
\(=146 \%\)
TIME \(=240 \mathrm{MIN}\)

PROGRAM AUTOMATICALLY FINISHED
==============================

\subsection*{9.3.1 Program 210: Charge Pb battery sealed MIL}

\section*{10: Pb battery sealed MIL』 select Batteryprocessing: 』 P2: Charge}

\section*{Enter:}
- Nominal voltage
- Rated capacity

\section*{Step 1:}

In case the battery voltage before starting charging is below \(2.15 \mathrm{~V} \times\) numbers of cells:
Precharging with \(2.4 \mathrm{~V} \times\) number of cells until charging current of \(0.4 \mathrm{C}_{1}\) is reached.
This step will not be printed if it takes less than 3 minutes.

\section*{Step 2:}

I-charge with \(0.4 \mathrm{C}_{1}\) until a charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 3:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until the charging current is decreased to \(0.02 \mathrm{C}_{1}\).

\section*{End of program}

Time monitoring:
Precharge maxiumum 2 hours, I- and U-charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)


\section*{Monitoring:}

Precharge maximum 2 hours, I- and U-charge maximum 8 hours.

\subsection*{9.3.2 Program 211: Charge Pb battery sealed commercial}

\section*{11: Pb battery sealed commercial \(』\) select Batteryprocessing: 』 P2: Charge}

\section*{Enter:}
- Nominal voltage
- Rated capacity

\section*{Step 1:}

In case battery voltage before starting charge is below \(2.15 \mathrm{~V} \times\) number of cells:
Precharge with \(2.4 \mathrm{~V} \times\) number of cells until a charging current of \(0.36 \mathrm{C}_{1}\) is reached.
This step will not be printed if it takes less than 3 minutes.

\section*{Step 2:}

I-charge with \(0.36 \mathrm{C}_{1}\) until a charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 3:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until the charging current is decreased to \(0.02 \mathrm{C}_{1}\).

\section*{End of program}

Time monitoring:
Precharge maxium 2 hours, I- and U-charge maximum 6 hours, capacity maximum \(1.5 \times \mathrm{C}\)

\subsection*{9.3.3 Program 212: Charge Valve Regulated Lead Acid Aircraft Battery}

\section*{Name according to manual:}

Constant Potential Charge for Lead Acid Aircraft Batteries

\section*{12: Valve Regulated Lead Acid Aircraft Battery \\ \(\checkmark\) select Batteryprocessing: 』}

\section*{P2: Charge}

\section*{Enter:}
- Manufacturer
- Nominal voltage
- Rated capacity

\section*{Step 1:}

Constant Potential Charge
Manufacturer Concorde RG®: with \(2.35 \mathrm{~V} /\) cell and \(\mathrm{I}=\mathrm{C}_{1}\) for a minimum of 8 hours.
Printout as soon as current drops to \(0.05 \mathrm{C}_{1}\).
Then continue charging at the same constant potential for a minimum of 4 hours. If current has not dropped to 0.05 C 1 within 8 hours:
Error message: Chargingtime!
Manufacturer Gill: with \(2,375 \mathrm{~V} /\) cell and \(\mathrm{I}=\mathrm{C}_{1}\) until the charge rate drops below 0.5 A . If current has not dropped to 0.5 A within 7 hours:
Error message: Chargingtime!
Manufacturer Enersys: with 2,417 V / cell. Current and time:
\begin{tabular}{|l|l|l|}
\hline Battery Capacity & Current & time \\
\hline 10 Ah & 10 A & 3 hours \\
\hline 18 Ah & 20 A & 3 hours \\
\hline 22 Ah & 20 A & 5 hours \\
\hline 25 Ah & 20 A & 5 hours \\
\hline 37 Ah & 30 A & 6 hours \\
\hline 40 Ah & 30 A & 6 hours \\
\hline 43 Ah & 30 A & 7 hours \\
\hline
\end{tabular}

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery will be charged with 20 A to 28 V .

\subsection*{9.3.4 Program 216: Charging lead battery commercial open}

\section*{16: Lead battery vented commercial \\ \(\curvearrowleft\) Select Batteryprocessing: 』 P2: Charge}

\section*{Enter:}
- Nominal voltage
- Rated capacity

\section*{Step 1:}

In case battery voltage before charging is below \(2.15 \mathrm{~V} \times\) number of cells:
Precharge with \(2.4 \mathrm{~V} \times\) number of cells until charging current of \(0.25 \mathrm{C}_{1}\) is reached.
This step is not printed if it takes less than 3 minutes.

\section*{Step 2:}

I-charge with \(0.25 \mathrm{C}_{1}\) until the charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 3:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current is decreased to \(0.04 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Time monitoring:}

Precharge maximum 6 hours, I- and U-charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)

\subsection*{9.3.5 Program 219: Charge Pb battery (free input)}

\section*{19: Pb battery (free input)}

\section*{\(\checkmark\) select Batteryprocessing: 』} P2: Charge

\section*{Enter:}
- Nominal voltage
- Rated capacity
- Final charging voltage
- Charging current

\section*{Step 1:}

In case battery voltage before charging is below \(2.15 \mathrm{~V} \times\) number of cells:
Precharge with \(2.4 \mathrm{~V} \times\) number of cells until charging current of \(0.36 \mathrm{C}_{1}\) is reached.
This step will not be printed if it takes less than 3 minutes.

\section*{Step 2:}

I-charge with charging current until charging voltage \(\times\) number of cells is reached.

\section*{Step 3:}

U-charge with charging voltage \(\times\) number of cells until charging current is decreased to \(0.04 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Time monitoring:}

Precharge maximum 2 hours, I - and U-charge maximum 6 hours, capacity maximum \(1.5 \times \mathrm{C}\).

\subsection*{9.3.6 Program 220: Charge NiCd battery (manufacturer independent)}

Can be used e.g. for Changhong batteries (20GNCxx) or HBL (NCSP...).
For Changhong (20GNCxx) and HBL (NCSP...) must be chose \(\mathrm{C}_{2}\) and a topping charge with 4 hours.

\section*{20: NiCd battery (manufacturer independent)』 select Batteryprocessing: 』 \\ P2: Charge}

\section*{Enter:}
- Number of cells
- Rated capacity
- \(\quad \mathrm{C}_{1}, \mathrm{C}_{2}\) or \(\mathrm{C}_{5}\)
- Topping charge time

\section*{Step 1:}

Charge with \(\mathrm{C}_{1}, \mathrm{C}_{2}\) or \(\mathrm{C}_{5}\) until charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 2:}

Topping charge \(\mathrm{C}_{5}, \mathrm{C}_{10}\) or \(\mathrm{C}_{25}\) for for the entered time.
15 (30) minutens before the end of the topping charge a signal asks for the measurement of the single cells voltages and to control the electrolyte level.

\section*{End of program}

\section*{Time monitoring:}

Charging maximum 72, 144 or 360 minutes.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} /\) cell during charging, error message:
minus delta U detected

\subsection*{9.3.7 Program 221: Charge NiCd battery HAWKER}

\section*{Name according to manual: IUI charge - method}

\section*{21: NiCd battery HAWKER \\ 』 select Batteryprocessing: 』 \\ P2: Charge}

\section*{Enter:}
\begin{tabular}{ll} 
Number of cells \\
\(-\quad\) & Rated capacity \\
XLM Battery or not
\end{tabular}

\section*{Step 1:}

Charging with \(\mathrm{C}_{1}\) until a charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 2:}

Topping charge \(\mathrm{C}_{5}\) for 2 hours.
15 minutes before the end of the topping charge a signal asks for the measurement of the single cells voltages and to control the electrolyte level.
Cells with a voltage below \(1.56 \mathrm{~V}(\mathrm{XLM}: 1.58 \mathrm{~V})\) are marked with a *.

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery will be charged with 40 A to 31 V .
Afterwards the battery will be charged with 8 A for another 2 hours.

\section*{Time monitoring:}

Charging maximum 75 minutes.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} / c e l l\) during charging, error message:
minus delta U detected

\subsection*{9.3.8 Program 222: Charge NiCd battery SAFT}

\section*{Name according to manual: Constant Current Charge for SAFT with \(\mathrm{C}_{1}\)}

\section*{22: NiCd battery SAFT \\ 』 select Batteryprocessing: 』 \\ P2: Charge}

\section*{Enter:}
\begin{tabular}{ll} 
Number of cells \\
\(-\quad\) & Rated capacity \\
ULM Battery or not
\end{tabular}

\section*{Step 1:}

Charging with \(\mathrm{C}_{1}\) until a charging voltage of \(1.57 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 2:}

Topping charge \(\mathrm{C}_{10}\) for 4 hours.
30 minutes before the end of the topping charge a signal asks for the measurement of the single cells voltages and to control the electrolyte level
Cells with a voltage below 1.50 V (ULM: 1.55 V ) are marked with a *.

\section*{End of program}

\section*{Time monitoring:}

Charging maximum 75 minutes.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} /\) cell during charging, error message:
minus delta U detected

\subsection*{9.3.9 Program 223: Charge NiCd battery NKBN}

\section*{Name according to manual: Constant Current Charge for HKБH with \(\mathrm{C}_{1}\)}

\section*{23: NiCd battery NKBN \\ 』 select Batteryprocessing: 』 \\ P2: Charge}

\section*{Enter:}
- \(\quad\) Number of cells

\section*{Step 1:}

Charging with \(\mathrm{C}_{1}\) until a charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 2:}

Topping charge \(\mathrm{C}_{5}\) for 2 hours.
60 minutes before the end of the topping charge a signal asks for the measurement of the single cells voltages and to control the electrolyte level.
30 minutes before the end of the topping charge a signal requests to control the electrolyte level 10 minutes before the end of the topping charge a signal requests to measure the single cells voltages.

\section*{End of program}

\section*{Time monitoring:}

Charging maximum 72 minutes.

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} / \mathrm{cell}\) during charging, error message:
minus delta U detected

\subsection*{9.3.10 Program 224: Charging NiCd battery MARATHON}

\section*{Name according to manual:}

Charge (Constant Current) for MARATHON with main charge current

\section*{24: NiCd battery MARATHON \\ 』 select Batteryprocessing: 』 \\ P2: Charge}

\section*{Enter:}
Number of cells
Rated capacity
Charging current main-charge
\(\mathrm{M}^{3}\) or not \(\mathrm{M}^{3}\)

\section*{Step 1:}

Charging with charging current main-charge until a charging voltage of \(1.55 \mathrm{~V}(1.60 \mathrm{~V}) \times\) number of cells is reached.
After that a signal requests the measurement of the single cells voltages. In case the voltage is below \(1.55 \mathrm{~V}(1.60 \mathrm{~V})\) charging continues for 5 minutes and again a cell voltage measurement is requested. Otherwise step 2 follows.
In case the number of measured cells does not conform to the number of cells for example a cell has been measured twice the device is not able to decide how to continue and the user is asked if all cells are \(>1.55 \mathrm{~V}(1.60 \mathrm{~V})\). Enter: \(1=\mathrm{YES} 0=\mathrm{NO}\).

\section*{Step 2:}

Topping charge with \(0.4 \times\) charging current main-charge for 1 hour.
15 minutes before the end of the topping charge a signal requests to control the electrolyte level.
Before the end of the topping charge a signal requests the measurement of single cells voltages.

\section*{End of program}

\section*{Voltage monitoring:}

Monitoring minus \(\Delta \mathrm{U}>30 \mathrm{mV} / c e l l\) during charging, error message:
minus delta U detected


\subsection*{9.4 Capacity test}

The program "P3: Capacity Test" is a specific part of the maintenance (program "P4: Maintenance") and is used for capacity testing of aviation batteries. It meets the requirements of the battery manufacturer.

\section*{Example for NiCd-batteries:}
```

================================

```

\section*{copyrgght NORTEC}

2014-15 UL60 V 1.0 16.06.15
SN: 160001

DATE: 28.06.15
BATTERY NO:
USER NO:
NOM. VOLTAGE: 24.00 V
CAPACITY: 040.0 Ah
PROGRAM: 322
NiCd Battery SAFT
Capacity Test
PROGRAM START 10:38:02
VOLTAGE = 25.41 V
P322:S1: 11:29:53
DISCHARGE
VOLTAGE \(=20.70 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=34.02 \mathrm{Ah}\)
= 085 \%
TIME = 051 MIN
CELL 01: 1.052 V
CELL 02: 1.073 V
\(i\)
CELL 20: 1.032 V

P322:S1: 11:32:53
DISCHARGE
VOLTAGE \(=20.00 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=36.07 \mathrm{Ah}\)
= \(090 \%\)
TIME \(=054 \mathrm{MIN}\)

BATTERY DISCHARGED
CAPACITY \(=36.07 \mathrm{Ah}\)
= \(090 \%\)

PROGRAM AUTOMATICALLY FINISHED
===============================

\subsection*{9.4.1 Program 312: Capacity Test Valve Regulated Lead Acid Aircraft Battery}

\section*{Name according to manual: Capacity Test for Valve Regulated Lead Acid Aircraft Batteries}

\section*{12: Valve Regulated Lead Acid Aircraft Battery \\ 』 select Batteryprocessing: 』 \\ P3: Capacity Test}

\section*{Enter:}
- Manufactor
- Nominal voltage
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\)
Manufactor Concorde RG®: until the voltage of 1.67 V for each cell is reached ( 20 V at 24 V nominal voltage).
After 51 minutes a record is printed ( \(85 \%\) ).
After that continue with discharging \(\mathrm{C}_{1}\) until the voltage of 1.67 V for each cell is reached.
Printout: C> \(85 \%\) :Battery is OK , if the time is greater than 51 minutes
Printout: C> 90\%:Battery is OK, if the time is greater than 54 minutes
Manufactor Gill: until the voltage of 1.67 V for each cell is reached ( 20 V at 24 V nominal voltage). After 48 minutes a record is printed ( \(80 \%\) ).
After that continue with discharging \(\mathrm{C}_{1}\) until the voltage of 1.67 V for each cell is reached.
Printout: C> 80\%:Battery is OK, if the time is greater than 48 minutes
Manufactor Enersys: until the voltage of 1.67 V for each cell is reached ( 20 V at 24 V nominal voltage), bet maximal 48 minutes.
Printout: C> 80\%:Battery is OK, if the time is greater than 48 minutes

\section*{Step 2:}

Wait 60 Minutes

\section*{Step 3:}

Charging with \(\mathrm{C}_{2}\) and 2.33 V for each cell for 7 hours.

\section*{End of program}

Displayed is the capacity measured during discharging:

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery is discharged with 40 A to 20 V .
After that it is charged with 20 A to 28 V .

\subsection*{9.4.2 Program 320: Capacity Test NiCd battery (manufacturer independent)}

Can be used e.g. for Changhong batteries (20GNCxx) oder HBL (NCSP...).
Program is identical to program 321.

\subsection*{9.4.3 Program 321: Capacity Test NiCd battery HAWKER}

\section*{Name according to manual: Capacity Check for HAWKER with \(\mathrm{C}_{1}\)}

\section*{21: NiCd battery HAWKER \\ \(\checkmark\) select Batteryprocessing: 』 P3: Capacity Test}

Refer also program 421 Maintenance.
While the program P3: Capacity Test requires a fully charged battery, the program maintenance can treat partially charged batteries. After the program maintenance you get a fully charged battery. After the program P3: Capacity Test the battery is discharged. After a waiting period of at least 8 hours, the battery can be recharged.

\section*{Enter:}
- Number of cells
- Rated capacity
- Query, when the cell test measurement should be taken ( \(80-100 \%\) or \(48-60\) minutes)

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until battery voltage has reached \(1 \mathrm{~V} \times\) number of cells.
After 48 until 60 minutes a signal requests the measurement of single cell voltages.

After that continue discharging with \(\mathrm{C}_{1}\) until the battery voltage has reached \(1 \mathrm{~V} \times\) number of cells.

\section*{WARNING NOTE: „Battery discharged"}

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah . The battery will be discharged with 40 A to 20 V .

\section*{Example:}
```

================================
COPYRIGHT NORTEC
2014-15 UL60 V 1.0 16.06.15
SN: }16000

```
        DATE: 28.06.15
    BATTERY NO:
    USER NO:
NOM.VOLTAGE: 24.00 V
    CAPACITY: 040.0 Ah
    PROGRAM: 321
NiCd Battery HAWKER
Capacity Test
PROGRAM START 08:14:12
    VOLTAGE \(=26.96 \mathrm{~V}\)
P321:S1: 09:02:44
DISCHARGE
    VOLTAGE = 23.93 V
    CURRENT \(=40.01 \mathrm{~A}\)
    CAPACITY \(=031.8 \mathrm{Ah}\)
        = \(079 \%\)
        TIME \(=048 \mathrm{MIN}\)
    CELL 01: 1.196 V
    CELL 02: 1.194 V
        \(\downarrow\)
    CELL 20: 1.187 V
P321:S1: 09:14:39
DISCHARGE
    VOLTAGE \(=20.00 \mathrm{~V}\)
    CURRENT \(=40.01 \mathrm{~A}\)
    CAPACITY \(=039.8 \mathrm{Ah}\)
        \(=099 \%\)
        TIME \(=060 \mathrm{MIN}\)
BATTERY EVALUATION
C>80\%: Battery is OK
    CAPACITY \(=039.8 \mathrm{AH}\)
        = \(099 \%\)
PROGRAM AUTOMATICALLY FINISHED
\(=============================\)

\subsection*{9.4.4 Program 322: Capacity Test NiCd battery SAFT}

\section*{Name according to manual: Capacity Check for SAFT with \(\mathrm{C}_{1}\)}

\section*{22: NiCd battery SAFT \\ 』 select Batteryprocessing: 』 P3: Capacity Test}

\section*{Enter:}
- Number of cells
- Rated capacity
- Question for the cell test measurement (85-100\% or 51-60 minutes)

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
After 51 until 60 minutes a signal requests to measure the single cells voltages.
WARNING NOTE: „Battery discharged "

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah . The battery will be discharged with 40 A to 20 V .

\subsection*{9.4.5 Program 323: Capacity Test NiCd battery NKBN}

\section*{Name according to manual: Control Discharge for НКБН}

\section*{23: NiCd battery NKBN \\ 』 select Batteryprocessing: 』 P3: Capacity Test}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
At voltages \(23 \mathrm{~V}, 22 \mathrm{~V}\) and 21 V (values for a 24 V battery) or after 60 minutes a signal - up to 4 times - requests the measurement of the single cells voltages.

After that discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
WARNING NOTE: „Battery discharged"

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah . The battery will be discharged with 40 A to 20 V .

\subsection*{9.4.6 Program 324: Capacity Test NiCd battery MARATHON}

Name according to manual: Capacity Check for MARATHON with \(\mathrm{C}_{1}\)

\section*{24: NiCd battery MARATHON \\ \(』\) select Batteryprocessing: 』 P3: Capacity Test}

\section*{Enter:}
- Number of cells
- Rated capacity
- Question for the cell test measurement (85-100\% or 51-60 minutes)

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
After 51 and 60 minutes a signal requests the measurement of the single cells voltages.
After that discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
WARNING NOTE: „Battery discharged"

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah . The battery is discharged with 40 A to 20 V .

\subsection*{9.5 Maintenance}

With the help of the program „Maintenance " the capacity of the lead acid and NiCd batteries will be tested. For NiCd-batteries the program „P3: Capacity Test" according to manufaturers instructions is available in addition.

Example: Lead battery
===============================
COPYRIGHT NORTEC
2014-15 UL60 V 1.0 16.06.15
SN: 160001
DATE: 28.01.14
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 12.00 V
RATED CAP: 100.0 Ah
PROGRAM: 410
Pb battery sealed MIL
Maintenance
```

PROGRAM START 12:07:46

```

VOLTAGE \(=12.81 \mathrm{~V}\)
P410:S1: 16:42:46
DISCHARGE 1
VOLTAGE \(=09.00 \mathrm{~V}\)
CURRENT \(=20.01 \mathrm{~A}\)
CAPACITY \(=091.4 \mathrm{Ah}\)
\(=091 \%\)
\[
\text { TIME }=274 \mathrm{MIN}
\]

P410:S2: 16:45:53
PTOPPING CHARGE 1
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=002.0 \mathrm{Ah}\)
= \(002 \%\)
TIME \(=003 \mathrm{MIN}\)
P410:S3: 18:35:18
I-CHARGE 1
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=74.70 \mathrm{Ah}\)
\(=074 \%\)
TIME \(=111 \mathrm{MIN}\)
P410:S4: 20:04:58
U-CHARGE 1
VOLTAGE \(=14.40 \mathrm{~V}\)
CURRENT \(=02.01 \mathrm{~A}\)
CAPACITY \(=091.7 \mathrm{Ah}\)
\(=091 \%\)
TIME \(=201 \mathrm{MIN}\)
```

P410:S5: 22:04:25
TOPPING CHARGE }
VOLTAGE = 14.40 V
CURRENT = 00.71 A
CAPACITY = 094.0 Ah
= 094%
TIME = 120 MIN
P410:S6: 02:46:41
DISCHARGE 2
VOLTAGE = 09.01 V
CURRENT = 20.01 A
CAPACITY = 093.9 Ah
= 093 %
TIME = 282 MIN
P410:S7: 04:42:00
I-CHARGE 2
VOLTAGE = 14.39 V
CURRENT = 40.01 A
CAPACITY = 076.6 Ah
= 076%
TIME = 114 MIN
P410:S8: 06:09:53
U-CHARGE 2
VOLTAGE = 14.40 V
CURRENT = 02.01 A
CAPACITY = 093.7 Ah
= 093 %
TIME = 201 MIN
P410:S9: 08:09:01
TOPPING CHARGE 2
VOLTAGE = 14.40 V
CURRENT = 00.68 A
CAPACITY = 095.9 Ah
= 095 %
TIME = 120 MIN
BATTERY EVALUATION
C>80%: Battery is OK
CAPACITY = 093.9 Ah
= 093 %

```
PROGRAM AUTOMATICALLY FINISHED
================================

Example：NiCd－battery
＝ニ＝ニ＝ニ＝＝＝ニ＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
copyright NORTEC
2014－15 UL60 V 1．0 16．06．15 SN： 160001

DATE：28．06．15
BATTERY NO：
OPERATOR NO：
NOM．VOLTAGE： 24.00 V RATED CAP：040．0 Ah PROGRAM： 420
NiCd battery
Maintenance
PROGRAM START 08：40：32
VOLTAGE \(=26.27 \mathrm{~V}\)

P420：S1：08：46：38
DISCHARGE 1
VOLTAGE \(=24.37 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=003.5 \mathrm{Ah}\)
＝ \(008 \%\)
TIME \(=006 \mathrm{MIN}\)
P420：S2：09：11：53
I－CHARGE 1
VOLTAGE \(=30.99 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=016.6 \mathrm{Ah}\)
＝ \(041 \%\)
TIME \(=24 \mathrm{MIN}\)
P420：S3：10：26：00
TOPPING CHARGE 1
VOLTAGE \(=33.06 \mathrm{~V}\)
CURRENT \(=04.00 \mathrm{~A}\)
CAPACITY \(=021.6 \mathrm{Ah}\)
\(=054 \%\)
TIME \(=075 \mathrm{MIN}\)
```

P420:S4: 11:30:30
DISCHARGE 2
VOLTAGE = 20.00 V
CURRENT = 40.01 A
CAPACITY = 042.6 Ah
= 106 %
TIME = 064 MIN
P420:S5: 12:33:36
I-CHARGE 2
VOLTAGE = 30.99 V
CURRENT = 40.01 A
CAPACITY = 041.9 Ah
= 104 %
TIME = 062 MIN
P420:S6: 13:48:08
TOPPING CHARGE 2
VOLTAGE = 32.90 V
CURRENT = 08.00 A
CAPACITY = 051.8 Ah
= 129 %
TIME = 075 MIN
CELL 01: 1.612 V
CELL 02: 1.610 V
!
CELL 20:1.600 V
P420:S7: 14:02:55
TOPPING CHARGE 2
VOLTAGE = 32.90 V
CURRENT = 08.01 A
CAPACITY = 053.8 Ah
= 134%
TIME = 090 MIN
BATTERY EVALUATION
C>80%: Battery is OK
CAPACITY = 042.6 Ah
= 106 %
PROGRAM AUTOMATICALLY FINISHED
================================

```

\subsection*{9.5.1 Program 410: Maintenance Pb battery sealed MIL}

\section*{10: Pb battery sealed MIL \\ 』 select Batteryprocessing: 』 \\ P4: Maintenance}

\section*{Enter:}
- Nominal voltage
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{5}\) until a voltage of 1.5 V is reached.

\section*{Step 2:}

In case battery voltage is below \(2.15 \mathrm{~V} \times\) number of cells:
Precharge with \(2.4 \mathrm{~V} \times\) number of cells until charging current \(0.4 \mathrm{C}_{1}\) is reached.

\section*{Step 3:}

I-charge with \(0.4 \mathrm{C}_{1}\) until charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 4:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current is decreased to \(0.02 \mathrm{C}_{1}\).

\section*{Step 5:}

Discharging with \(\mathrm{C}_{5}\) to 1.5 V for each cell. The here detected capacity will be used to ascertain the effective capacity.

\section*{Step 6:}

I-charge with \(0.4 \mathrm{C}_{1}\) until the charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 7:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current is decreased to \(0.02 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Display Battery evaluation:}

C>90\%:BATTERY OK
or
C>70\%:BATTERY FOR UNCRITICAL USE
or
C<70\%:BATTERY WITH RECORD TAKE DISCHARGED BATTERY OUT OF SERVICE

\section*{Time monitoring:}

Precharge maximum 2 hours, I- and U-charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)

\subsection*{9.5.2 Program 411: Maintenance Pb battery sealed commercial}

\section*{11: Pb battery sealed commercial}

\section*{\(\checkmark\) select Batteryprocessing: 』}

\section*{P4: Maintenance}

Enter:
- Nominal voltage
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{10}\) until the voltage of 1.8 V is reached.

\section*{Step 2:}

In case battery voltage is below \(2.15 \mathrm{~V} \times\) number of cells:
Precharge with \(2.4 \mathrm{~V} \times\) number of cells until charging current of \(0.36 \mathrm{C}_{1}\) is reached.

\section*{Step 3:}

I-charge with \(0.36 \mathrm{C}_{1}\) until charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 4:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current is decreased to \(0.02 \mathrm{C}_{1}\).

\section*{Step 5:}

Discharging with \(\mathrm{C}_{10}\) to 1.8 V for each cell. The here detected capacity will be used to ascertain the effective capacity.

\section*{Step 6:}

I-charge with \(0.36 \mathrm{C}_{1}\) until the charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 7:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until the charging current is decreased to \(0.02 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Display battery evaluation:}

C>80\%:BATTERY is OK
or
C>60\%:BATTERY FOR UNCRITICAL USE
or
C<60\%:BATTERY WITH RECORD TAKE DISCHARGED BATTERY OUT OF SERVICE

\section*{Time monitoring:}

Precharge maximum 2 hours, I- and U-Charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)

\subsection*{9.5.3 Program 416: Maintenance Pb battery vented commercial}

\section*{16: Pb battery vented commercial \\ 乞 select Batteryprocessing: 』 \\ P4: Maintenance}

\section*{Enter:}
- Nominal voltage
- Rated capacity

\section*{Step 1:}

The message is displayed:
```

P416:S1: FILL IN ELECTROLYTE
wait for 20 MINUTES E=continue

```

The program waits for at maximum of 20 minutes.
Discharging with \(\mathrm{C}_{20}\) until a voltage of 1.8 V is reached.

\section*{Step 2:}

In case battery voltage is below \(2.15 \mathrm{~V} \times\) number of cells:
Precharge with \(2.4 \mathrm{~V} \times\) number of cells until charging current of \(0.25 \mathrm{C}_{1}\) is reached.

\section*{Step 3:}

I-charge with \(0.25 \mathrm{C}_{1}\) until charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 4:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until charging current is decreased to \(0.04 \mathrm{C}_{1}\).

\section*{Step 5:}

Discharging with \(\mathrm{C}_{20}\) to 1.8 V for each cell. The here detected capacity will be used to ascertain the effective capacity.

\section*{Step 6:}

I-charge with \(0.25 \mathrm{C}_{1}\) until the charging voltage of \(2.4 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 7:}

U-charge with \(2.4 \mathrm{~V} \times\) number of cells until the charging current is decreased to \(0.04 \mathrm{C}_{1}\).

\section*{End of program}

\section*{Display battery evaluation:}

C>70\%:BATTERY IS OK
or
C>50\%:BATTERY FOR UNCRITICAL USE
or
C<50\%:BATTERY WITH RECORD TAKE DISCHARGED BATTERY OUT OF SERVICE

\section*{Time monitoring:}

Precharge maxium 2 hours, I- and U-charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)

\subsection*{9.5.4 Program 419: Maintenance Pb battery (free input)}

\section*{19: Pb battery (free input) \\ 』 select Batteryprocessing: 』 P4: Maintenance}

\section*{Enter:}
- Nominal voltage
- Rated capacity
- Discharging current \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{10}\) or \(\mathrm{C}_{20}\)
- Final discharging voltage
- Final charging voltage
- Charging current

\section*{Step 1:}

Precharge with \(2.4 \mathrm{~V} \times\) number of cells until charging current of \(0.25 \mathrm{C}_{1}\) is reached.

\section*{Step 2:}

I-charge until the charging voltage \(\times\) number of cells is reached.

\section*{Step 3:}

U-charge with charging voltage \(\times\) number of cells until current is decreased to \(0.04 \mathrm{C}_{1}\).

\section*{Step 4:}

Discharging with discharging current to final charging voltage \(\times\) number of cells.
The here detected capacity will be used to ascertain the effective capacity.

\section*{Step 5:}

I-charge

\section*{Step 6:}

U-charge

\section*{End of program}

\section*{Display battery evaluation:}

C>80\%:BATTERY IS OK
or
C>60\%:BATTERY FOR UNCRITICAL USE
or
C<60\%:BATTERY WITH RECORD TAKE DISCHARGED BATTERY OUT OF SERVICE

\section*{Time monitoring:}

Precharge maximum 2 hours, I- and U-charge maximum 8 hours, capacity maximum \(1.5 \times \mathrm{C}\)

\subsection*{9.5.5 Program 420: Maintenance NiCd battery (manufacturer independent)}

\section*{20: NiCd battery (manufacturer independent) \\ 』 select Batteryprocessing: 』 \\ P4: Maintenance}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) for 6 minutes.

\section*{Step 2:}

Charging with \(\mathrm{C}_{1}\) until the charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 3:}

Topping charge \(\mathrm{C}_{10}\) for 1.5 hours.

\section*{Step 4:}

Discharging with \(\mathrm{C}_{1}\) to 1 V for each cell. The here detected capacity will be used to ascertain the effective capacity.

\section*{Step 5:}

Charging with \(\mathrm{C}_{1}\) until a charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 6:}

Topping charge \(\mathrm{C}_{5}\) for 1,5 hours.
15 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.

\section*{End of program}

\section*{Display battery evaluation:}

C>80\%:BATTERY IS OK
or
C<80\%:BATTERY WITH RECORD TAKE DISCHARGED BATTERY OUT OF SERVICE

\section*{Time monitoring:}

Charging maximum 72 minutes; capacity maximum \(1.7 \times \mathrm{C}\)

\section*{Voltage monitoring:}

Voltage decreased \(30 \mathrm{mV} / \mathrm{cell}\) (minimum 50 mV ) during charging error message: minus delta U detected.

\subsection*{9.5.6 Programm 421: Maintenance NiCd battery HAWKER}

\section*{Name according to manual: Capacity Check for HAWKER with \(\mathrm{C}_{1}\)}

\section*{21: NiCd battery HAWKER \\ 』 select Batteryprocessing: 』 P4: Maintenance}

Refer also to program P321: Capacity Test.
The program Capacity Test involves only the discharge with capacity test!

\section*{Enter:}
- Number of cells
- Rated capacity
- Query, when the cell test measurement should be taken (80-100\% or 48-60 minutes)
- Query, if the manufacturer's recommended procedure or a fast maintenance
- XLM Battery or not
A) The recommended procedure of Hawker extends battery life and ensures maximum lifespan.
B) Fast maintenance can be applied to temporal bottlenecks, if any repairs on the battery are required and the battery has met the requirements of the insulation test (> \(0.5 \mathrm{M} \Omega\) ).

\section*{A) Recommended procedure:}

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{Step 2:}

8 hours break.
The message is displayed:
„wait 8 hours.
 to skip waiting time: press

\section*{*}

\section*{Step 3:}

I-Charge with \(\mathrm{C}_{1}\) until charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 4:}

Topping charge with \(\mathrm{C}_{5}\) for 2 hours.
15 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.

In case that step 1 has been completed with a capacity rated above the nominal capacity, the program ends with this step.

\section*{Schritt 5:}

Discharging with \(\mathrm{C}_{1}\) to 1 V for each cell.
After 48 minutes a signal requests for measurement of single cells voltages.
Thereafter further discharge C 1 to the voltage of 1 V per cell is reached.
The determined capacity in this step is used at the end for the battery rating.

\section*{Step 6:}

8 hours break.
The message is displayed:
„wait 8 hours
 skip waiting time possible: press
*

Step 7:
I-Charge with \(\mathrm{C}_{1}\) until charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 8:}

Topping charge with \(\mathrm{C}_{5}\) for 2 hours.
15 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.

\section*{End of program.}

\section*{Excample:}

Connected is a 24 V battery with 40 Ah . The battery is discharged with 40 A to 20 V .
Waiting time 8 hours.
After that the battery will be charged with 40 A to 31 V . Furthermore the battery will be charged for another 2 hours with 8 A . The battery is discharged a second time with 40 A at 20 V .

Waiting time 8 hours.
After that the battery will be charged with 40 A to 31 V . Furthermore the battery will be charged for another 2 hours with 8 A .

\section*{B) Fast maintenance:}

\section*{Step 1:}

I-Charge with \(\mathrm{C}_{1}\) until charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is.

\section*{Step 2:}

Topping charge with \(\mathrm{C}_{5}\).
Duration 3 hours.
15 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.

\section*{Step 3:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{Step 4:}

I-Charge with \(\mathrm{C}_{1}\) until charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 5:}

Topping charge with \(\mathrm{C}_{5}\) for 2 hours.
15 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.
Cells with a voltage below \(1.56 \mathrm{~V}(\mathrm{XLM}: 1.58 \mathrm{~V})\) are marked with a *.

\section*{End of program.}

\section*{Excample:}

Connected is a 24 V battery with 40 Ah . The battery will be charged with 40 A to 31 V .
Furthermore the battery will be charged with 8 A . After 3.5 hours the battery will be discharged with 40 A to 31 V . Furthermore the battery will be charged for another 2 hours with 8 A .

\section*{Excample NiCd battery HAWKER recommended procedure}
copv̌IGнt NORTEC
2014-15 UL60 V 1.0 16.06.15
SN: 160001

DATE: 28.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V
RATED CAP: 040.0 Ah
PROGRAM: 421
NiCd battery HAWKER
Maintenance
---------------------------
PROGRAM START 08:14:12
VOLTAGE \(=26.96 \mathrm{~V}\)

P421:S1: 09:14:39
DISCHARGE
VOLTAGE \(=20.00 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=039.8 \mathrm{Ah}\)
\(=099 \%\)
TIME \(=060 \mathrm{MIN}\)
P421:S3: 18:01:39
I-CHARGE 1
VOLTAGE \(=30.99 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=030.4 \mathrm{Ah}\)
\(=076 \%\)
TIME \(=045 \mathrm{MIN}\)
P421:S4: 20:01:39
TOPPING CHARGE 1
VOLTAGE \(=33.05 \mathrm{~V}\)
CURRENT \(=08.00 \mathrm{~A}\)
CAPACITY \(=042.3 \mathrm{Ah}\)
= \(106 \%\)
TIME \(=120 \mathrm{MIN}\)
CELL 01: 1.196 V
CELL 02: 1.194 V
1
CELL 20: 1.187 V
```

P421:S5: 21:01:39
DISCHARGE
VOLTAGE = 20.00 V
CURRENT = 40.01 A
CAPACITY = 039.8 Ah
= 099 %
TIME = 060 MIN
P421:S7: 05:46:39
I-CHARGE 1
VOLTAGE = 30.99 V
CURRENT = 40.01 A
CAPACITY = 030.4 Ah
= 076 %
TIME = 045 MIN
P421:S8: 07:31:39
TOPPING CHARGE 1
VOLTAGE = 33.06 V
CURRENT = 08.00 A
CAPACITY = 041.6 Ah
= 105%
TIME = 105 MIN
CELL 01: 1.653 V
CELL 02: 1.650 V
\downarrow
CELL 20:1.658 V
P421:S8: 07:45:39
TOPPING CHARGE 1
VOLTAGE = 33.05 V
CURRENT = 08.00 A
CAPACITY = 042.3 Ah
= 106 %
TIME = 120 MIN
BATTERY EVALUATION
C>80%: Battery is OK
CAPACITY = 039.8 Ah
= 099 %
PROGRAM AUTOMATICALLY FINISHED
================================

```

\subsection*{9.5.7 Programm 422: Maintenance NiCd battery SAFT}

\section*{Name according to manual: Capacity Check or Regular Check}

\section*{22: NiCd battery SAFT \\ § select Batteryprocessing: 』 \\ P4: Maintenance}

Refer also to program P322: Capacity Test.
The program Capacity Test involves only the discharge with capacity test!

\section*{Enter:}
- Number of cells
- Rated capacity
- Query, when the cell test measurement should be taken (85-100\% or 51-60 minutes)
- Query, if Capacity Check or Regular Check
- ULM Battery or not
- When "Regular Check" has been selected:

Waiting after program step "Deep Discharge"? (see step 2)

Regular Check requires an Cell-Measurement-Adapter and is therefore not included in the UL60-L.
General Overhaul starts after the reassembly of the battery.


\section*{Step 0:}

If „General Overhaul" has been selected:
Continue with step 3
If „Regular Check" or „Periodical Check" have been selected:
All cells over 1.05 V ?
If not: Charge with 0.1 C for 1.5 hours. If polarity of cells reversed, then error message.

\section*{Step 1:}

Residual Discharge with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{Step 2:}
A) If "Regular check" has been selected

Deep discharge with device internal 1 Ohm resistors on each cell for 12 hours.
Depending on settings the device might wait after executing Step 3. This will prevent, that e.g. in the night the request to control the electrolyte level might occur.
B) If "Periodical check" has been selected

Continue with step 6

\section*{Step 3:}

I-Charge with \(\mathrm{C}_{1}\) until charging voltage of \(1.57 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 4:}

Topping charge (final charge) with \(\mathrm{C}_{10}\) for 4 hours.
30 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.

\section*{Step 5:}

Residual discharge with \(\mathrm{C}_{1}\) to 1 V for each cell.
After 51 minutes a signal requests for measurement of single cells voltages.
Thereafter further discharge \(\mathrm{C}_{1}\) to the voltage of 1 V per cell is reached.

\section*{Step 6:}

8 hours break.
The message is displayed:
„wait 8 hours.
 skip waiting time possible: press

\section*{*}

Step 7:
I-Charge with \(\mathrm{C}_{1}\) until charging voltage of \(1.57 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 8:}

Topping charge with \(\mathrm{C}_{10}\) for 4 hours.
30 minutes before the end of the topping charge a signal requests for measurement of single cells voltages and to control the electrolyte level.
Otherwise:
30 minutes before the end of the topping charge a signal requests to control the electrolyte level.

\section*{End of program.}

\subsection*{9.5.8 Programm 424: Maintenance NiCd battery MARATHON}

\section*{Name according to manual: Battery Maintenance}

\section*{24: NiCd battery MARATHON \\ \(\checkmark\) select Batteryprocessing: 』 \\ P4: Maintenance}

Refer also to program P324: Capacity Test.
The program Capacity Test involves only the discharge with capacity test!

\section*{Enter:}
- Number of cells
- Rated capacity
- Charging current main charge
- Query, when the cell test measurement should be taken (85-100\% or 51-60 minutes)
- \(\mathrm{M}^{3}\) or not \(\mathrm{M}^{3}\)


\section*{Step 1:}

Charge with constant current main charge until charging voltage of \(1.55 \mathrm{~V}(1.60 \mathrm{~V}) \times\) number of cells is reached.
Thereafter an accustic signal requests to measure the single cells voltages.
If a voltage is below \(1.55 \mathrm{~V}(1.60 \mathrm{~V})\), charging continues for 3 minutes and there is a renewed request for cell voltage measurement, otherwise proceed to step 2.
If the number of measured cells does not match the number of cells, eg. perhaps because a cell was measured twice. In this case, the program can not proceed automatically and prompt the user to decode whether all cells have> \(1.55 \mathrm{~V}(1.60 \mathrm{~V})\). Enter: \(1=\) yes \(0=\) no.

\section*{Step 2:}

Topping charge with \(0.4 \times\) charging current main-charge for 1 hour.
15 minutes before the end of the topping charge a signal requests to control the electrolyte level.
Before the end of the topping charge a signal requests the measurement of single cells voltages.
The further steps are carried out only if the following conditions are met:
- All cell voltages are above \(1.55 \mathrm{~V}(1.60) \mathrm{V}\).
- No cell voltage is above 1.90 V .

\section*{Step 3:}

Discharge with \(\mathrm{C}_{1}\) for 60 minutes or one cell has reached 1 V .
After 51 and 60 minutes a signal requests for measurement of single cells voltages.
The further steps are carried out only if the following conditions are met:
- All cell voltages during the 51 minutes measurement above 1.00 V .

\section*{Otherwise}

WARNING NOTE: „Battery discharged "
Battery must be reconditioned (deep cycled)

\section*{Step 4:}

8 hours break.
The message is displayed:
„wait 8 hours. \(\square\) skip waiting time possible: press

\section*{* ."}

\section*{Step 5:}

Charge with constant current main charge until charging voltage of \(1.55 \mathrm{~V}(1.60 \mathrm{~V}) \times\) number of cells is reached.
Thereafter an accustic signal requests to measure the single cells voltages.
If a voltage is below \(1.55 \mathrm{~V}(1.60 \mathrm{~V})\), charging continues for 3 minutes and there is a renewed request for cell voltage measurement, otherwise proceed to step 2.
If the number of measured cells does not match the number of cells, eg. perhaps because a cell was measured twice. In this case, the program can not proceed automatically and prompt the user to decode whether all cells have> \(1.55 \mathrm{~V}(1.60 \mathrm{~V})\). Enter: \(1=\) yes \(0=\) no.

\section*{Step 6:}

Topping charge with \(0.4 \times\) charging current main-charge for 2 hours.
15 minutes before the end of the topping charge a signal requests to control the electrolyte level.
Before the end of the topping charge a signal requests the measurement of single cells voltages.

\section*{End of program.}

\subsection*{9.6 I-Charge}

With the help of program "P5: I-Charge" individual charging programs can be started. Charging time span and final charging voltage free selection possible.

\author{
Example: NiCd battery
}

\section*{Enter:}
1.55 V shut down voltage
maximum 1:00 hour charging time span

\title{
20: NiCd battery (manufacturer independent) P520: PARAMETER INPUT MAX. CHARGE TIME 01:00 H
}

\section*{20: NiCd battery (manufacturer independent) P520: PARAMETER INPUT MAX. VOLTAGE/CELL? \(1.55 \mathrm{~V} / \mathrm{C}\)}

\section*{COPYRIGHT \\ NORTEC}

2014-15 UL60 V 1.0 16.06.15
SN: 160001

DATE: 28.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V RATED CAP: 040.0 Ah
PROGRAM: 520
NiCd battery
I-Charge

PROGRAM START 10:38:02
VOLTAGE \(=25.41 \mathrm{~V}\)

\section*{11:35:53}

I-CHARGE
VOLTAGE \(=31.00 \mathrm{~V}\)
CURRENT \(=40.01 \mathrm{~A}\)
CAPACITY \(=38.07 \mathrm{Ah}\)
= 096 \%
TIME \(=057 \mathrm{MIN}\)

PROGRAM AUTOMATICALLY FINISHED
================================
Termination because shut down voltage has been reached.


\section*{сорүк木gr NORTEC}

2014-15 UL60 V 1.0 16.06.15
SN: 160001

DATE: 28.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V RATED CAP: 040.0 Ah PROGRAM: 520
NiCd battery
I-Charge

PROGRAM START 10:38:02
VOLTAGE \(=25.41 \mathrm{~V}\)
```

P520:S1: 11:38:03
I-CHARGE
VOLTAGE = 30.55 V
CURRENT = 40.01 A
CAPACITY = 40.00 Ah
= 100%
TIME = 060 MIN

```
PROGRAM AUTOMATICALLY FINISHED
================================

Termination because maximum charging time span has been reached.

\section*{9．6．1 Program 510：I－Charge Pb battery sealed MIL}

9．6．2 Program 511：I－Charge Pb battery sealed commercial
9．6．3 Program 516：I－Charge Pb battery vented commercial

\section*{10：Pb battery sealed MIL}

』 select Batteryprocessing：』

\section*{P5：I－Charge}

Enter：
－Nominal voltage
－Rated capacity
－Charging current
－Charging time span
－Switch off voltage of each cell

\section*{Step 1：}

I－Charge with entered charging current for the input time span．If shut down voltage is reached the program will be terminated．

\section*{End of program}

\section*{9．6．4 Programm 520：I－charge NiCd battery（manufacturer independent）}

\section*{20：NiCd battery（manufacturer independent）}

』 select Batteryprocessing：』

\section*{P5：I－Charge}

\section*{Enter：}
－Number of cells
－Rated capacity
－Charging current
－Charging time span
－Switch off voltage of each cell

\section*{Step 1：}

I－Charge with the entered charging current for the input time span． If the shut down voltage is reached the program will be terminated．

\section*{End of program}

\subsection*{9.7 Deep Discharge \\ (not available in the UL60-L)}

With the help of program „P6: Deep Discharge" the NiCd batteries will be completly discharged according to manufacturers instructions.

\section*{Example:}

```

COPYRIGHT
NORTEC

```

2014-15 UL60 V 1.0 16.06.15
SN: 160001

DATE: 28.06.15
BATTERY NO:
OPERATOR NO:
NOM. VOLTAGE: 24.00 V
RATED CAP: 040.0 Ah
PROGRAM: 624
NiCd battery MARATHON
Deep Discharge
```

PROGRAM START 10:38:02

```
    VOLTAGE \(=25.41 \mathrm{~V}\)
P624:S1: 11:26:53
DISCHARGE
    VOLTAGE \(=20.00 \mathrm{~V}\)
    CURRENT \(=40.01 \mathrm{~A}\)
    CAPACITY \(=32.07 \mathrm{Ah}\)
            = \(080 \%\)
        TIME \(=048 \mathrm{MIN}\)
P624:S1: 12:33:34
DISCHARGE
    VOLTAGE \(=10.00 \mathrm{~V}\)
    CURRENT \(=04.00 \mathrm{~A}\)
    CAPACITY \(=33.27 \mathrm{Ah}\)
        = \(080 \%\)
        TIME \(=066 \mathrm{MIN}\)

\footnotetext{
PROGRAM AUTOMATICALLY FINISHED
}

\footnotetext{

}

\subsection*{9.7.1 Program 621: Deep Discharge NiCd battery HAWKER}

\section*{(not available in the UL60-L)}

Name according to manual: Deep Discharge with Cell shorting for HAWKER with \(\mathrm{C}_{1}\)

\section*{21: NiCd battery HAWKER \\ § select Batteryprocessing: 』 P6: Deep Discharge}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
After 48 minutes a signal requests the measurement of the single cells voltages.
Continue with discharging with \(\mathrm{C}_{1}\) until the voltage of 1 V multiplied by the number of interconnected cells is reached.

\section*{Step 2:}

Afterwards discharging with \(\mathrm{C}_{10}\) until a voltage of 0.5 V for each cell is reached.
The connection of an automatic cell scan adapter is required

\section*{Step 3:}

Deep discharging with device integrated 1 Ohm resistors over each cell for 24 hours.

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with mit 40 Ah .
The battery at first will be discharged with 40 A to 20 V . Afterwards discharging with 4 A to 10 V . After that 1 Ohm resistors will be shifted over the cells.

\section*{Time monitoring:}

Discharging with \(\mathrm{C}_{1}\) maximum 90 minutes, discharging with \(\mathrm{C}_{10}\) maximum 180 minutes.

\subsection*{9.7.2 Program 622: Deep Discharge NiCd Battery SAFT}

\section*{(not available in the UL60-L)}

Name according to manual: Deep Discharge with Cell shorting for SAFT with \(\mathrm{C}_{1}\)

\section*{22: NiCd Battery SAFT \\ 』 Select Batteryprocessing: 』 P6: Deep Discharge}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
The connection of an automatic cell scan adapter is required:

\section*{Step 2:}

Deep discharging with device integrated 1 Ohm resistors over each cell for 12 hours.

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery is discharged with 40 A to 20 V . Afterwards the 1 Ohm resistors will be shifted over the cells.

\section*{Time monitoring:}

Step 1: Discharging maximum 90 minutes.

\subsection*{9.7.3 Program 623: Deep Discharge NiCd battery NKBN}

\section*{(not available in the UL60-L)}

Name according to manual: Re-Discharge for HKБH

\section*{23: NiCd battery NKBN \\ 』 select Batteryprocessing: 』 P6: Deep Discharge}

\section*{Enter:}
- \(\quad\) Number of cells

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.
If voltages are \(23 \mathrm{~V}, 22 \mathrm{~V}\) and 21 V a signal requests the measurement of the single cells voltages.
Afterwards discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery is discharged with 40 A to 20 V .

\section*{Time monitoring:}

Discharging maximum 90 minutes.

\subsection*{9.7.4 Program 624: Deep Discharge NiCd battery MARATHON}

\section*{(not available in the UL60-L)}

Name according to manual: Deep Discharge (with Cell shorting) for MARATHON with \(\mathrm{C}_{1}\)

\section*{24: NiCd battery MARATHON \\ § select Batteryprocessing: 』 P6: Deep Discharge}

\section*{Enter:}
- Number of cells
- Rated capacity

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{Step 2:}

Afterwards discharging with \(\mathrm{C}_{10}\) until a voltage of 0.5 V for each cell is reached.
The connection of an automatic cell scan adapter is required:

\section*{Step 3:}

Deep discharging with device integrated 1 Ohm resistors over each cell for 12 hours.

\section*{End of program}

\section*{Example:}

Connected is a 24 V battery with 40 Ah .
The battery is discharged with 40 A to 20 V . Continue discharging with 4 A to 10 V . After that 1 Ohm resistors are shifted over the cells.

\section*{Time monitoring:}

Discharging with \(\mathrm{C}_{1}\) maximum 90 minutes, discharging with \(\mathrm{C}_{10}\) maximum 180 minutes.

\subsection*{9.8 Reconditioning (not available in the UL60-L)}

\subsection*{9.8.1 General}

Reaching the cells in test capacity less than \(80 \%\) of its rated capacity, the battery manufacturer recommends as measure reconditioning.

The reconditioning may be performed manually by the programs DISCHARGE, DEEP DISCHARGE with individual resistors and CHARGE / INITIAL COMMISSIONING. The details refer to the Maintenance Manuals of the battery manufacturer. An alternative to using individual resistors provides Nortec Electronics comfortable Zero-volt adapter as accessories.

The UL60 has an automatic program for reconditioning, for this the use of automatic Zellmeßadapters is required. Please note that during auto reconditioning with UL60, the device can not be used elsewhere.

In the following, the automatic reconditioning with UL60 will now be described.

\subsection*{9.8.2 Program 721: Reconditioning NiCd battery HAWKER (not available in the UL60-L) Name according to manual: Reconditioning}

\section*{21: NiCd battery HAWKER \\ 』 select Batteryprocessing: 』 P7: Reconditioning}

\section*{Enter:}
- Number of cells
- Rated capacity
- Waiting after program step "Deep Discharge"? (see step 4)

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{Step 2:}

Afterwards discharging with \(\mathrm{C}_{10}\) until a voltage of 0.5 V for each cell is reached.

\section*{Step 3:}

Deep discharging with device integrated 1 Ohm resistors over each cell for 24 hours.

\section*{Step 4:}

Depending on settings the device might wait after executing Step 4. This will prevent, that e.g. in the night the request to control the electrolyte level might occur.

8 hours charging with \(0.2 \times \mathrm{C}_{1}\)
15 minutes before the end of the charging you are asked to control the electrolyte level

\footnotetext{
Step 5:
Wait for 60 minutes.
}

\section*{Step 6:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{End of program}

\section*{Delivery of battery:}

Battery must rest for 8 hours. Afterwards start P1 Initial operation with parameter 7 hours.

\section*{Time monitoring:}

Discharging with \(\mathrm{C}_{1}\) maximum 90 minutes, discharging with \(\mathrm{C}_{10}\) maximum 180 minutes.

\section*{ATTENTION:}

The user has to wait for 8 hours after the end of the program until the program initial operation with the parameter 7 hours can be started.

\subsection*{9.8.3 Program 722: Reconditioning NiCd battery SAFT \\ (not available in the UL60-L) \\ Name according to manual: Deep Discharge, Cell shorting and Charge}

\section*{22: NiCd battery SAFT \\ § select Batteryprocessing: 』 P7: Reconditioning}

\section*{Enter:}
- Number of cells
- Rated capacity
- Waiting after program step "Deep Discharge"? (see step 4)

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until a voltage of 1 V for each cell is reached.

\section*{Step 2:}

Afterwards discharging with \(\mathrm{C}_{10}\) until a voltage of 0.5 V for each cell is reached.

\section*{Step 3:}

Deep discharging with device integrated 1 Ohm resistors over each cell for 12 hours.

\section*{Step 4:}

Depending on settings the device might wait after executing Step 4. This will prevent, that e.g. in the night the request to control the electrolyte level might occur.

Charging with \(\mathrm{C}_{1}\) until the charging voltage of \(1.57 \mathrm{~V} \times\) number of cells is reached.

\section*{Step 5:}

Topping charge \(\mathrm{C}_{10}\) for 4 hours.
30 minutes before the end of the topping charge you are asked to control the electrolyte level

\section*{End of program}

\section*{Time monitoring:}

Discharging with \(\mathrm{C}_{1}\) maximum 90 minutes, discharging with \(\mathrm{C}_{10}\) maximum 180 minutes.

\subsection*{9.8.4 Program 724: Reconditioning NiCd battery MARATHON (not available in the UL60-L) Name according to Manual: Reconditioning}

\section*{24: NiCd battery MARATHON \\ 』 select Batteryprocessing: 』 P7: Reconditioning}

\section*{Enter:}
- Number of cells
- Rated capacity
- Charging current main-charge
- Waiting after program step "Deep Discharge"? (see step 4)

\section*{Step 1:}

Discharging with \(\mathrm{C}_{1}\) until voltage of 1 V for each cell is reached.

\section*{Step 2:}

Afterwards discharging with \(\mathrm{C}_{10}\) until a voltage of 0.5 V for each cell is reached.

\section*{Step 3:}

Deep discharging with device integrated 1 Ohm resistor over each cell for 12 hours.

\section*{Step 4:}

Depending on settings the device might wait after executing Step 4. This will prevent, that e.g. in the night the request to control the electrolyte level might occur.

Charging with charging current main-charge until the charging voltage of \(1.55 \mathrm{~V} \times\) number of cells is reached minimum duration 150 minutes.
In case the voltage is under 1.55 V the charging continues for further 5 minutes and a new measurement takes place.

\section*{Step 5:}

Topping charge \(0.4 \times\) charging current main-charge for 2 hours.
15 minutes before the end of the topping charge you are asked to control the electrolyte level.

\section*{End of program}

\section*{Time monitoring:}

Discharging with \(\mathrm{C}_{1}\) maximum duration 90 minutes, discharging with \(\mathrm{C}_{10}\) maximum 180 minutes.

\section*{9．9 Constant Voltage Supply}

\section*{9．9．1 Program 800：Constant Voltage Supply}

\section*{00：Other battery \\ 』 select Batteryprocessing：』 P8：Constant Voltage Supply}

\section*{Enter：}
－Charging current
－Nominal voltage
－Time

\section*{Step 1：}

Constant voltage supply with input voltage and input current for the time．

\section*{End of program}

\section*{9．9．2 Program 810：Constant Voltage Supply Pb battery sealed MIL}

9．9．3 Program 811：Constant Voltage Supply Pb battery sealed commercial
9．9．4 Program 816：Constant Voltage Supply Pb battery vented commercial
9．9．5 Program 819：Constant Voltage Supply Pb battery（free input）

\section*{10：Pb battery sealed MIL}

』 select Batteryprocessing：』 P8：Constant Voltage Supply

\section*{Enter：}
－Charging current
－Nominal voltage

\section*{Step 1：}

Constant voltage supply with 2.25 V for each cell and with the input current．
Time： 24 hours

\section*{End of program}

\section*{9．9．6 Program 820：Constant Voltage Supply NiCd battery（manufacturer inde－ pendent）}

9．9．7 Program 821：Constant Voltage Supply NiCd battery HAWKER

\section*{20：NiCd battery（manufacturer independent） \\ 』 select Batteryprocessing：』 P8：Constant Voltage Supply}

Enter：
－Charging current
－Nominal voltage

\section*{Step 1：}

Constant voltage supply with 1.42 V for each cell and with the entered current． Time span： 7 hours

\section*{End of program}

\section*{9．9．8 Program 822：Constant Voltage Supply NiCd battery SAFT}

\section*{22：NiCd battery SAFT \\ 』 select Batteryprocessing：』 \\ P8：Constant Voltage Supply}

Enter：
－Charging current
－Nominal voltage

\section*{Step 1：}

Constant voltage supply with 1.42 V for each cell and with the entered current． Time span： 5 hours．

\section*{End of program}

\section*{10 Change printer paper and ink ribbon}

\section*{Preparation:}
- Untighten 2 finger screws at the printer
- Pull the printer by handle out of the printer housing from the front side
- Continue with chapter 10.1 and/or 10.2

\subsection*{10.1 Changing of ink ribbon}

Name: Ink ribbon (pack of two) HTZ/TKZ: 101033111000
For changing of the ink ribbon use the following procedure:
- Pull out the used ink ribbon from the opened printer
- Pull out the printer paper for several centimetres

\subsection*{10.2 Changing of printer paper roll:}

Name: printer paper roll (pack of six) HTZ/TKZ: UL60.40071
For changing of the printer paper proceed as follows:
- Remove ink ribbon from the opened printer
- Pull down the consumed paper roll from the printer. Here pressing the retaining brackets to the side. Tear through printer paper.
- Pull the remaining paper out of the printer from the front in the direction of the paper feed.
- Thread printer paper through the printer housing and insert the printer.

\section*{Reassembling:}
- Arrange the printer paper in ink ribbon and insert the ink ribbon in the printer pressing softly. Position for inserting ink ribbon: the exposed ink ribbon must be at the bottom, the wheel of the transportation mechanical system at the left side
- Insert the front panel of the printer
- Move the printer in the printer housing
- Fix the 2 finger screws at the printer
- Connect the device to the 230 V mains
- Start the printer selftest: printer does proof copy if the device is switched on while pressing the button for paperfeed
Switch off device

\section*{11 Used terms}

This part contains a summary of abbreviations and terms used in this operation manual:

\section*{Battery sealed}

The sealed battery contains cells that can not be opened, that allow no refill of water. The cells are generally closed with space membranes, which open at the first excessive pressure.
These batteries with non-removable fasteners are designated by manufacturers as no maintenancefree battery with a fixed electrolyte (gel / AGM).

\section*{Battery closed}

The term "open" battery was replaced by "closed" battery according to DIN-Standard as an "open" battery has got a degassing stopper.

The term "open" ("vented") is used quite distinctly on the display and on the printed records.

\section*{Final charging- and discharging voltage}

The terms charging-/discharging voltage stand for voltages regulated by the manufacturer the range you can charge / discharge a battery without damage.

\section*{Nominal voltage}

The nominal voltage is a determined voltage set by battery technology (for example: Lead batteries: \(2 \mathrm{~V} /\) cell; NiCd- batteries: \(1,2 \mathrm{~V} /\) cell) which is drafted as feature size of a battery.

The term „nominal voltage" is used to calculate a switching voltage (number of cells x voltage) and within the charging- or discharging programs which are defined for different battery construction types.

Nominal voltage is not equal to cell voltage!

\section*{Nominal capacity}

The nominal capacity (Ah) as feature size of a battery is based on a preset discharging at a distinct temperature upto a set discharging voltage (discharging current, battery temperature, final discharging voltage).

\section*{Excample:}

Nominal current or 0.2 or \(\mathrm{C}_{5}(\mathrm{~A})\)
5-hours constant discharging current (formerly \(\mathrm{I}_{5}\) ) of a battery which is calculated as follows:
\(\mathrm{C}_{5}\) (Ah)
\(-=0.2 \mathrm{C}_{5}(\mathrm{~A})\)
5h

\section*{Cell voltage}

The term "cell voltage" is used in connection with the number of cells of the treated battery to describe a program related switching voltage within charging or discharging programs.

Cell voltage is not equal to nominal voltage!

\section*{Reconditioning (not available in the UL60-L)}

Reconditioning is a process to recover reversible capacity losses on cells imbalanced during shallow cycling and discharge voltage reduction by continuous float charge, or storage.

\section*{Testcycle / tests}

In order to find out the real capacity of the battery and to make the battery ready for further use "Testcycle /tests" means a cycle of discharge-charge-discharge-charge.

\section*{Charging}
"Charging" means a non-damaging full-charge within the shortest possible time. Charging is done in a way that the battery can be used immidiately after the charging.

\section*{Note}

Terms which are not described here are explained in the procedures for each program use (for example IU-charging, IUI-charging or similar).

\section*{Battery manufacturer}

For the programs, which are marked with a manufacturer name the battery treatments follow the instructions of the following battery manufacturers:
- Hawker \({ }^{\circledR}\)
- Saft
- HKБH (NKBN)
- MarathonNorco Aerospace \({ }^{\circledR}\)

The following programs were created with the utmost care according to the maintenance manuals of the battery manufacturers, but are offered without guarantee. Before applying the programmed programs this must be checked for compliance with currently valid maintenance manuals of the battery manufacturer. If in doubt or in case of deviations the currently valid maintenance manual of the battery manufacturer always applies.```

